Quantitative estimation of intrinsic induced polarization and superparamagnetic parameters from airborne electromagnetic data

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. E433-E446 ◽  
Author(s):  
James Macnae

The primary aim of my research is to improve the characterization of induced polarization (IP) responses in airborne electromagnetic (AEM) survey data. The principal objectives are to test alternative methodologies for quantitative modeling and inversion to extract the spatial variation of IP parameters using the inductively thin-sheet model. The methods tested first fit, by nonnegative least squares, an AEM decay to the early delay time data, using thin-sheet basis functions. This modeled AEM decay is assumed to represent the IP source. It is then convolved with a few Cole-Cole models spanning the range of parameter sensitivity to get IP basis functions appropriate for the AEM excitation. Method 1 fits a linear sum of several AEM basis functions plus one IP basis function at a time and chooses the model with least-fitting error at late delay times. Method 2 fits a linear sum of several IP and several AEM basis functions. Both methods fit IP affected airborne data well, with normalized fitting errors being reduced by a significant factor when IP affects the data and is taken into account. Using penalty weights, superparamagnetic (SPM) effects can be simultaneously estimated in the fitting process. Without such weighting, SPM and IP parameter estimations are unstable. Cole-Cole models predict that the sensitivity of inductive airborne IP collected at 25 or 30 Hz base frequency indicates little overlap with galvanic ground IP collected with a 0.125 Hz waveform. Many easy IP sulfide targets with IP physical properties determined by ground surveys are predicted not to have a detectable airborne IP response. Clays, however, are predicted to have a small detectable background response that for airborne data would not be well-fitted by a single Cole-Cole response.

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. B161-B167 ◽  
Author(s):  
James Macnae ◽  
Xiuyan Ren ◽  
Tim Munday

The electrical conductivity distribution within wide palaeochannels is usually well-mapped from airborne electromagnetic data using stitched 1D algorithms. Such stitched 1D solutions are, however, inappropriate for narrow valleys. An alternative option is to consider 2D or 3D models to allow for finite lateral extent of conductors. In airborne electromagnetic data within the Musgrave block near the well-studied Valen conductor, strong induced polarization (IP) and superparamagnetic (SPM) effects make physical property and structure estimation even more uncertain for deep channel clays, particularly those whose channel widths are comparable to their depth of burial. We developed a recursive data fitting algorithm based on dispersive thin sheet responses. The separate IP and SPM components of the fit provide near-surface chargeability and SPM distributions, and the associated electromagnetic (EM) fit provides stripped data with monotonic decays compatible with a simple nondispersive conductivity model. The validity of this stripped data prediction was tested through a comparison of 1D conductivity-depth imaging and 3D inversion applied to the original data and the stripped data. Due to the forked geometry of the deep conductivity structure in the region we investigated, we successfully used 3D rather than 2D inversion to predict the conductivity distribution related to the EM data. We recovered from the stripped data a continuous conductivity structure consistent with a branching, clay-filled palaeovalley under cover.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. E153-E162 ◽  
Author(s):  
James Macnae ◽  
Tim Munday ◽  
Camilla Soerensen

All available inversion software for airborne electromagnetic (AEM) data can at a minimum fit a nondispersive conductivity model to the observed inductive secondary field responses, whether operating in the time or frequency domain. Quasistatic inductive responses are essentially controlled by the induction number, the product of frequency with conductivity and magnetic permeability. Recent research has permitted the conductivity model to be dispersive, commonly using a single Cole-Cole parameterization of the induced polarization (IP) effect; but this parameterization slows down and destabilizes any inversion, and it does not account for the need for dual or multiple Cole-Cole responses. Little has been published on inverting AEM data affected by frequency-dependent magnetic permeability, or superparamagnetism (SPM), usually characterized by a Chikazumi model. Because the IP and SPM effects are small and are usually only obvious at late delay times, the aim of our research is to determine if these IP and SPM effects can be fitted and stripped from the AEM data after being approximated with simple dispersive models. We are able to successfully automate a thin-sheet model to do this stripping. Stripped data then can be inverted using a nondispersive conductivity model. The IP and SPM parameters fitted independently to each independent measured decay to provide stripping are proven to be spatially coherent, and they are geologically sensible. The results are found to enhance interpretation of the regolith geology, particularly the nature and distribution of transported materials that are not afforded by mapping conductivity/conductance alone.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. E317-E327 ◽  
Author(s):  
Terence Kratzer ◽  
James C. Macnae

A major impediment in the path toward airborne induced polarization (IP) is an effective method to quantify data from inductive sources, such as those used in airborne electromagnetic systems. We modeled inductive IP using a combination of Warburg and exponential decay models as a basis for fitting electromagnetic data from ground time-domain electromagnetic (TEM) and airborne versatile TEM (VTEM) surveys. Observed decays were deconvolved into electromagnetic and IP constituents by constrained least-squares fitting of basis functions modified to account for transmitter waveforms. The method was confirmed through synthetic modeling of 2D and 3D structures, and when applied to ground TEM or airborne TEM data, obtained an estimate of apparent chargeability at each station or fiducial. In the case of a VTEM survey in Africa, the apparent chargeabilities mapped graphitic sediments and provided spatially consistent indications of clay concentrations. A limitation on this airborne IP for airborne applications is motion noise, which places a lower limit on usable base frequency and begins to significantly affect the signal at the later delay times, when IP effects are most visible.


2016 ◽  
Vol 13 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Wen-Ben Li ◽  
Zhao-Fa Zeng ◽  
Jing Li ◽  
Xiong Chen ◽  
Kun Wang ◽  
...  

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. E75-E88 ◽  
Author(s):  
Changhong Lin ◽  
Gianluca Fiandaca ◽  
Esben Auken ◽  
Marco Antonio Couto ◽  
Anders Vest Christiansen

Recently, the interest in the induced polarization (IP) phenomenon in airborne time-domain electromagnetic (ATEM) data has increased considerably. IP may affect the ATEM data significantly and mask underlying geologic structures. To simulate 2D airborne IP data, a 2D finite-element forward-modeling algorithm has been developed with the dispersive conductivity described by the well-known Cole-Cole model. We verify our algorithm by comparison with the 1D solution of the AarhusInv code. Two-dimensional forward responses on six synthetic models, mimicking archetypal 2D conductive and chargeable anomalies, have been generated, and the results indicate that 2D IP affects the data significantly. Differences between the 2D IP responses and the 1D IP responses are evident above the 2D anomalies and at their edges. These differences are similar to what is found when comparing 2D and 1D forward responses over conductive 2D anomalies without considering IP. We evaluate an effective robust inversion scheme to recover the 2D IP parameters using the 1D laterally constrained inversion (LCI) scheme. The inversion of the synthetic data using the robust scheme indicates that not only can the IP parameters be recovered, but also the IP inversions can provide more accurate resistivity sections than a resistivity-only inversion, in terms of resistivity values and anomaly thickness/depth. The field example from Hope Bay area in Canada is even more valuable, considering that part of the profile consists of only negative data, which cannot be inverted with a resistivity-only scheme. Furthermore, the edge effects at the anomaly boundaries are less pronounced in the IP parameters than in the resistivity parameter on the synthetic models with more conductive backgrounds.


2018 ◽  
Vol 18 (3) ◽  
pp. 702-712 ◽  
Author(s):  
G.H. Majzoobi ◽  
M. Kashfi ◽  
N. Bonora ◽  
G. Iannitti ◽  
A. Ruggiero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document