Geophysical inversion for 3D contact surface geometry

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. K27-K45
Author(s):  
Christopher G. Galley ◽  
Peter G. Lelièvre ◽  
Colin G. Farquharson

Geologists’ interpretations about the earth typically involve distinct rock units with contacts between them. Three-dimensional geologic models typically comprise surfaces of tessellated polygons that represent the contacts. In contrast, geophysical inversions typically are performed on voxel meshes comprising space-filling elements. Standard minimum-structure voxel inversions recover smooth models, inconsistent with typical geologic interpretations. Various voxel inversion methods have been developed that attempt to produce models more consistent with such interpretations. However, many of those methods involve increased numerical challenges and ultimately the underlying parameterization of the earth is still inconsistent with geologists’ interpretations. Surface geometry inversion (SGI) is a fundamentally different approach that effectively takes some initial surface-based model and alters the position of the contact surfaces to better fit the geophysical data. Many authors have developed SGI methods. In contrast to those, we are the first to develop a method with the following characteristics: we work directly with 3D explicit surfaces from an input geologic model of arbitrary complexity; we incorporate intersection detection methods to avoid unacceptable topological scenarios; we use global optimization strategies and stochastic sampling to solve the inverse problem and aid model assessment; and we use surface subdivision to reduce the number of model parameters, which also provides regularization without adding the complication of trade-off parameters in the objective function. We test our methods on simpler synthetic examples taken from early influential literature, and we demonstrate their typical use on a more complicated example based on a seafloor massive sulfide deposit. Our work provides a geophysical inversion approach that can work directly with 3D surface-based geologic models. With this approach, geophysical and geologic models can share the same parameterization; there is only a single model, with no need to translate information between two inconsistent parameterizations.

2020 ◽  
Author(s):  
Amir Sagy ◽  
Vladimir Lyakhovsky ◽  
Yossef H. Hatzor

<p>Natural fault surfaces are interlocked, partly cohesive, and display multiscale geometric irregularities. Here we examine the nucleation of deformation and the evolution of shear in such interlocked surfaces using a closed-form analytical solution and a series of laboratory experiments.  The analytical model considers an interlocked interface with multiscale roughness between two linear elastic half-space blocks. The interface geometry is based on three-dimensional fault surfaces imaging. It is represented by a Fourier series and the plane strain solution for the elastic stress distribution is represented as a sum of the constant background stress generated by a uniform far-field loading and perturbations associated with the interface roughness. The model predicts the critical stress necessary for failure and the location of failure nucleation sites across the surface, as function of the initial surface geometry.</p><p>A similar configuration is adopted in laboratory experiments as carbonate blocks with rough interlocked surfaces generated by tensional fracturing are sheared in a servo-controlled direct shear apparatus. Resistance to shear and surface roughness evolution are measured under variable normal stresses, slip distances and slip rates.  We find that the evolution of surface morphology with shear is closely related to the loading configuration. Initially rough, interlocked, surfaces become rougher when normal stress and displacement rate are increased. Under a fixed, relatively low normal stress and fixed displacement rate however, the surfaces become smoother with increasing displacement distance.  </p><p>The shear of the interlocked slip surfaces is associated with volumetric deformation, wear and frictional slip, all of which are typically observed across natural fault zones. We suggest that their intensities and partitioning are strongly affected by the initial surface roughness characteristics, the background stress, and the rate and magnitude of shear displacement. </p>


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 70-77 ◽  
Author(s):  
B. B. Bhattacharya ◽  
Dinesh Gupta ◽  
Buddhadeb Banerjee ◽  
Shalivahan

A mise‐a‐la‐masse survey was carried out in Bhukia area, Banswara district, Rajasthan, India for auriferous sulfide occurrences. This area was originally surveyed for copper mineralization. Exploratory drilling, however, proved it to be economically not viable. The area was reopened for geophysical surveys when grab samples indicated the presence of gold. Initial geophysical surveys for copper mineralization showed electromagnetic, induced polarization, and resistivity anomalies. At first, one borehole was drilled for gold exploration on the basis of initial geophysical surveys. It encountered massive sulfide mineralization in association with gold. Borehole logging and a mise‐a‐la‐masse survey were carried out in this borehole. Three further boreholes drilled on the basis of the mise‐a‐la‐masse results encountered massive sulfide mineralization in association with gold. One of the three boreholes, 100 m from the first borehole along strike, was used for another set of mise‐a‐la‐masse measurements. A composite equipotential map was prepared using the results of mise‐a‐la‐masse results of both the boreholes. The equipotential contours show a north‐northwest‐south‐southeast trend of mineralization. The boreholes drilled on the basis of the mise‐a‐la‐masse results have delineated a strike length of more than 500 m of gold‐bearing sulfide mineralization. The sulfide content ranges from 10 to 40% and gold concentration ranges from 2 to 6 ppm. The dip and plunge of the lode, as anticipated from the mise‐a‐la‐masse results, are toward the west and north, respectively. Mise‐a‐la‐masse surveys are continuing in the adjoining areas.


Author(s):  
Christopher J. Arthurs ◽  
Nan Xiao ◽  
Philippe Moireau ◽  
Tobias Schaeffter ◽  
C. Alberto Figueroa

AbstractA major challenge in constructing three dimensional patient specific hemodynamic models is the calibration of model parameters to match patient data on flow, pressure, wall motion, etc. acquired in the clinic. Current workflows are manual and time-consuming. This work presents a flexible computational framework for model parameter estimation in cardiovascular flows that relies on the following fundamental contributions. (i) A Reduced-Order Unscented Kalman Filter (ROUKF) model for data assimilation for wall material and simple lumped parameter network (LPN) boundary condition model parameters. (ii) A constrained least squares augmentation (ROUKF-CLS) for more complex LPNs. (iii) A “Netlist” implementation, supporting easy filtering of parameters in such complex LPNs. The ROUKF algorithm is demonstrated using non-invasive patient-specific data on anatomy, flow and pressure from a healthy volunteer. The ROUKF-CLS algorithm is demonstrated using synthetic data on a coronary LPN. The methods described in this paper have been implemented as part of the CRIMSON hemodynamics software package.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Guillaume Ropp ◽  
Vincent Lesur ◽  
Julien Baerenzung ◽  
Matthias Holschneider

Abstract We describe a new, original approach to the modelling of the Earth’s magnetic field. The overall objective of this study is to reliably render fast variations of the core field and its secular variation. This method combines a sequential modelling approach, a Kalman filter, and a correlation-based modelling step. Sources that most significantly contribute to the field measured at the surface of the Earth are modelled. Their separation is based on strong prior information on their spatial and temporal behaviours. We obtain a time series of model distributions which display behaviours similar to those of recent models based on more classic approaches, particularly at large temporal and spatial scales. Interesting new features and periodicities are visible in our models at smaller time and spatial scales. An important aspect of our method is to yield reliable error bars for all model parameters. These errors, however, are only as reliable as the description of the different sources and the prior information used are realistic. Finally, we used a slightly different version of our method to produce candidate models for the thirteenth edition of the International Geomagnetic Reference Field.


1984 ◽  
Vol 79 (5) ◽  
pp. 933-946 ◽  
Author(s):  
Bruce E. Nesbitt ◽  
Fred J. Longstaffe ◽  
David R. Shaw ◽  
Karlis Muehlenbachs

Sign in / Sign up

Export Citation Format

Share Document