Petrophysical properties prediction from prestack seismic data using convolutional neural networks

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. N41-N55
Author(s):  
Vishal Das ◽  
Tapan Mukerji

We have built convolutional neural networks (CNNs) to obtain petrophysical properties in the depth domain from prestack seismic data in the time domain. We compare two workflows — end-to-end and cascaded CNNs. An end-to-end CNN, referred to as PetroNet, directly predicts petrophysical properties from prestack seismic data. Cascaded CNNs consist of two CNN architectures. The first network, referred to as ElasticNet, predicts elastic properties from prestack seismic data followed by a second network, referred to as ElasticPetroNet, that predicts petrophysical properties from elastic properties. Cascaded CNNs with more than twice the number of trainable parameters as compared to end-to-end CNN demonstrate similar prediction performance for a synthetic data set. The average correlation coefficient for test data between the true and predicted clay volume (approximately 0.7) is higher than the average correlation coefficient between the true and predicted porosity (approximately 0.6) for both networks. The cascaded workflow depends on the availability of elastic properties and is three times more computationally expensive than the end-to-end workflow for training. Coherence plots between the true and predicted values for both cases show that maximum coherence occurs for values of the inverse wavenumber greater than 15 m, which is approximately equal to 1/4 the source wavelength or λ/4. The network predictions have some coherence with the true values even at a resolution of 10 m, which is half of the variogram range used in simulating the spatial correlation of the petrophysical properties. The Monte Carlo dropout technique is used for approximate quantification of the uncertainty of the network predictions. An application of the end-to-end network for prediction of petrophysical properties is made with the Stybarrow field located in offshore Western Australia. The network makes good predictions of petrophysical properties at the well locations. The network is particularly successful in identifying the reservoir facies of interest with high porosity and low clay volume.

The objective of this research is provide to the specialists in skin cancer, a premature, rapid and non-invasive diagnosis of melanoma identification, using an image of the lesion, to apply to the treatment of a patient, the method used is the architecture contrast of Convolutional neural networks proposed by Laura Kocobinski of the University of Boston, against our architecture, which reduce the depth of the convolution filter of the last two convolutional layers to obtain maps of more significant characteristics. The performance of the model was reflected in the accuracy during the validation, considering the best result obtained, which is confirmed with the additional data set. The findings found with the application of this base architecture were improved accuracy from 0.79 to 0.83, with 30 epochs, compared to Kocobinski's AlexNet architecture, it was not possible to improve the accuracy of 0.90, however, the complexity of the network played an important role in the results we obtained, which was able to balance and obtain better results without increasing the epochs, the application of our research is very helpful for doctors, since it will allow them to quickly identify if an injury is melanoma or not and consequently treat it efficiently.


2021 ◽  
pp. 1-17
Author(s):  
Luis Sa-Couto ◽  
Andreas Wichert

Abstract Convolutional neural networks (CNNs) evolved from Fukushima's neocognitron model, which is based on the ideas of Hubel and Wiesel about the early stages of the visual cortex. Unlike other branches of neocognitron-based models, the typical CNN is based on end-to-end supervised learning by backpropagation and removes the focus from built-in invariance mechanisms, using pooling not as a way to tolerate small shifts but as a regularization tool that decreases model complexity. These properties of end-to-end supervision and flexibility of structure allow the typical CNN to become highly tuned to the training data, leading to extremely high accuracies on typical visual pattern recognition data sets. However, in this work, we hypothesize that there is a flip side to this capability, a hidden overfitting. More concretely, a supervised, backpropagation based CNN will outperform a neocognitron/map transformation cascade (MTCCXC) when trained and tested inside the same data set. Yet if we take both models trained and test them on the same task but on another data set (without retraining), the overfitting appears. Other neocognitron descendants like the What-Where model go in a different direction. In these models, learning remains unsupervised, but more structure is added to capture invariance to typical changes. Knowing that, we further hypothesize that if we repeat the same experiments with this model, the lack of supervision may make it worse than the typical CNN inside the same data set, but the added structure will make it generalize even better to another one. To put our hypothesis to the test, we choose the simple task of handwritten digit classification and take two well-known data sets of it: MNIST and ETL-1. To try to make the two data sets as similar as possible, we experiment with several types of preprocessing. However, regardless of the type in question, the results align exactly with expectation.


2019 ◽  
Vol 11 (18) ◽  
pp. 2176 ◽  
Author(s):  
Chen ◽  
Zhong ◽  
Tan

Detecting objects in aerial images is a challenging task due to multiple orientations and relatively small size of the objects. Although many traditional detection models have demonstrated an acceptable performance by using the imagery pyramid and multiple templates in a sliding-window manner, such techniques are inefficient and costly. Recently, convolutional neural networks (CNNs) have successfully been used for object detection, and they have demonstrated considerably superior performance than that of traditional detection methods; however, this success has not been expanded to aerial images. To overcome such problems, we propose a detection model based on two CNNs. One of the CNNs is designed to propose many object-like regions that are generated from the feature maps of multi scales and hierarchies with the orientation information. Based on such a design, the positioning of small size objects becomes more accurate, and the generated regions with orientation information are more suitable for the objects arranged with arbitrary orientations. Furthermore, another CNN is designed for object recognition; it first extracts the features of each generated region and subsequently makes the final decisions. The results of the extensive experiments performed on the vehicle detection in aerial imagery (VEDAI) and overhead imagery research data set (OIRDS) datasets indicate that the proposed model performs well in terms of not only the detection accuracy but also the detection speed.


Sign in / Sign up

Export Citation Format

Share Document