Direct updating of rock physics properties using elastic full-waveform inversion

Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Qi Hu ◽  
Scott Keating ◽  
Kristopher A. Innanen ◽  
Huaizhen Chen

Quantitative estimation of rock physics properties is an important part of reservoir characterization. Most current seismic workflows in this field are based on amplitude variation with offset. Building on recent work on high resolution multi-parameter inversion for reservoir characterization, we construct a rock-physics parameterized elastic full-waveform inversion (EFWI) scheme. Within a suitably-formed multi-parameter EFWI, in this case a 2D frequency-domain isotropic-elastic FWI with a truncated Gauss-Newton optimization, any rock physics model with a well-defined mapping between its parameters and seismic velocity/density can be examined. We select a three-parameter porosity, clay content, and water saturation (PCS) parameterization, and link them to elastic properties using three representative rock physics models: the Han empirical model, the Voigt-Reuss-Hill boundary model, and the Kuster and Toksöz inclusion model. Numerical examples suggest that conditioning issues, which make a sequential inversion (in which velocities and density are first determined through EFWI, followed by PCS parameters) unstable, are avoided in this direct approach. Significant variability in inversion fidelity is visible from one rock physics model to another. However, the response of the inversion to the range of possible numerical optimization and frequency selections, as well as acquisition geometries, varies widely. Water saturation tends to be the most difficult property to recover in all situations examined. This can be explained with radiation pattern analysis, where very low relative scattering amplitudes from saturation perturbations are observed. An investigation performed with a Bayesian approach illustrates that the introduction of prior information may increase the inversion sensitivity to water saturation

2016 ◽  
Vol 4 (1) ◽  
pp. SA55-SA71 ◽  
Author(s):  
P. Jaiswal

Hydrate quantification from seismic data is a two-pronged challenge. The first is creating a velocity field with high enough resolution and accuracy such that it is a meaningful representation of hydrate variability in the host sediments. The second is constructing a rock-physics model that accounts for the appropriate growth of the hydrate and allows for the interpretation of the velocity field in terms of hydrate saturation. In this paper, both challenges are addressed in a quantification workflow that uses 2D seismic and colocated well logs. The study area is situated in the Krishna-Godavari Basin, offshore eastern Indian coast, where hydrate was discovered in the National Gas Hydrate Program Expedition 01 (NGHP-01). The workflow hinges on a rock-physics model that expresses total hydrate saturation in terms of primary (matrix) and secondary (fractures, faults, voids, etc.) porosities and their respective primary and secondary saturations and incorporates hydrate-filled secondary porosity into the rock as an additional grain type using the Hashin-Shtrikman bounds. The model is first applied to a set of well logs at a colocated site, NGHP-01-10, following which the application is extended into the seismic domain by (1) the incoherency attribute as a proxy for secondary porosity and (2) a full-waveform inversion-based P-wave velocity ([Formula: see text]) model as a proxy for primary saturation. The remaining — the primary porosity and secondary saturation — are assumed to remain the same across the seismic profile as at the site NGHP-01-10. The resulting, seismically estimated, hydrate saturation compares well with saturations from core depressurization at colocated sites NGHP-01-10 and NGHP-01-13. The quantification workflow presented here is potentially adaptable to other geographical areas with the caveat that empirical relations between porosity, saturation, and seismic attributes may have to be locally established.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. R553-R563
Author(s):  
Sagar Singh ◽  
Ilya Tsvankin ◽  
Ehsan Zabihi Naeini

The nonlinearity of full-waveform inversion (FWI) and parameter trade-offs can prevent convergence toward the actual model, especially for elastic anisotropic media. The problems with parameter updating become particularly severe if ultra-low-frequency seismic data are unavailable, and the initial model is not sufficiently accurate. We introduce a robust way to constrain the inversion workflow using borehole information obtained from well logs. These constraints are included in the form of rock-physics relationships for different geologic facies (e.g., shale, sand, salt, and limestone). We develop a multiscale FWI algorithm for transversely isotropic media with a vertical symmetry axis (VTI media) that incorporates facies information through a regularization term in the objective function. That term is updated during the inversion by using the models obtained at the previous inversion stage. To account for lateral heterogeneity between sparse borehole locations, we use an image-guided smoothing algorithm. Numerical testing for structurally complex anisotropic media demonstrates that the facies-based constraints may ensure the convergence of the objective function towards the global minimum in the absence of ultra-low-frequency data and for simple (even 1D) initial models. We test the algorithm on clean data and on surface records contaminated by Gaussian noise. The algorithm also produces a high-resolution facies model, which should be instrumental in reservoir characterization.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. H79-H91 ◽  
Author(s):  
Sebastian Busch ◽  
Jan van der Kruk ◽  
Jutta Bikowski ◽  
Harry Vereecken

Conventional ray-based techniques for analyzing common-midpoint (CMP) ground-penetrating radar (GPR) data use part of the measured data and simplified approximations of the reality to return qualitative results with limited spatial resolution. Whereas these methods can give reliable values for the permittivity of the subsurface by employing only the phase information, the far-field approximations used to estimate the conductivity of the ground are not valid for near-surface on-ground GPR, such that the estimated conductivity values are not representative for the area of investigation. Full-waveform inversion overcomes these limitations by using an accurate forward modeling and inverts significant parts of the measured data to return reliable quantitative estimates of permittivity and conductivity. Here, we developed a full-waveform inversion scheme that uses a 3D frequency-domain solution of Maxwell’s equations for a horizontally layered subsurface. Although a straightforward full-waveform inversion is relatively independent of the permittivity starting model, inaccuracies in the conductivity starting model result in erroneous effective wavelet amplitudes and therefore in erroneous inversion results, because the conductivity and wavelet amplitudes are coupled. Therefore, the permittivity and conductivity are updated together with the phase and the amplitude of the source wavelet with a gradient-free optimization approach. This novel full-waveform inversion is applied to synthetic and measured CMP data. In the case of synthetic single layered and waveguide data, where the starting model differs significantly from the true model parameter, we were able to reconstruct the obtained model properties and the effective source wavelet. For measured waveguide data, different starting values returned the same wavelet and quantitative permittivities and conductivities. This novel approach enables the quantitative estimation of permittivity and conductivity for the same sensing volume and enables an improved characterization for a wide range of applications.


2020 ◽  
Vol 39 (2) ◽  
pp. 102-109
Author(s):  
John Pendrel ◽  
Henk Schouten

It is common practice to make facies estimations from the outcomes of seismic inversions and their derivatives. Bayesian analysis methods are a popular approach to this. Facies are important indicators of hydrocarbon deposition and geologic processes. They are critical to geoscientists and engineers. The application of Bayes’ rule maps prior probabilities to posterior probabilities when given new evidence from observations. Per-facies elastic probability density functions (ePDFs) are constructed from elastic-log and rock-physics model crossplots, over which inversion results are superimposed. The ePDFs are templates for Bayesian analysis. In the context of reservoir characterization, the new information comes from seismic inversions. The results are volumes of the probabilities of occurrences of each of the facies at all points in 3D space. The concepts of Bayesian inference have been applied to the task of building low-frequency models for seismic inversions without well-log interpolation. Both a constant structurally compliant elastic trend approach and a facies-driven method, where models are constructed from per-facies trends and initial facies estimates, have been tested. The workflows make use of complete 3D prior information and measure and account for biases and uncertainties in the inversions and prior information. Proper accounting for these types of effects ensures that rock-physics models and inversion data prepared for reservoir property analysis are consistent. The effectiveness of these workflows has been demonstrated by using a Gulf of Mexico data set. We have shown how facies estimates can be effectively used to build reasonable low-frequency models for inversion, which obviate the need for well-log interpolation and provide full 3D variability. The results are more accurate probability-based net-pay estimates that correspond better to geology. We evaluate the workflows by using several measures including precision, confidence, and probabilistic net pay.


Sign in / Sign up

Export Citation Format

Share Document