Facies — The drivers for modern inversions

2020 ◽  
Vol 39 (2) ◽  
pp. 102-109
Author(s):  
John Pendrel ◽  
Henk Schouten

It is common practice to make facies estimations from the outcomes of seismic inversions and their derivatives. Bayesian analysis methods are a popular approach to this. Facies are important indicators of hydrocarbon deposition and geologic processes. They are critical to geoscientists and engineers. The application of Bayes’ rule maps prior probabilities to posterior probabilities when given new evidence from observations. Per-facies elastic probability density functions (ePDFs) are constructed from elastic-log and rock-physics model crossplots, over which inversion results are superimposed. The ePDFs are templates for Bayesian analysis. In the context of reservoir characterization, the new information comes from seismic inversions. The results are volumes of the probabilities of occurrences of each of the facies at all points in 3D space. The concepts of Bayesian inference have been applied to the task of building low-frequency models for seismic inversions without well-log interpolation. Both a constant structurally compliant elastic trend approach and a facies-driven method, where models are constructed from per-facies trends and initial facies estimates, have been tested. The workflows make use of complete 3D prior information and measure and account for biases and uncertainties in the inversions and prior information. Proper accounting for these types of effects ensures that rock-physics models and inversion data prepared for reservoir property analysis are consistent. The effectiveness of these workflows has been demonstrated by using a Gulf of Mexico data set. We have shown how facies estimates can be effectively used to build reasonable low-frequency models for inversion, which obviate the need for well-log interpolation and provide full 3D variability. The results are more accurate probability-based net-pay estimates that correspond better to geology. We evaluate the workflows by using several measures including precision, confidence, and probabilistic net pay.

2021 ◽  
Vol 9 ◽  
Author(s):  
Kyle T. Spikes ◽  
Mrinal K. Sen

Rock-physics models relate rock properties to elastic properties through non-unique relationships and often in the presence of seismic data that contain significant noise. A set of inputs define the rock-physics model, and any errors in that model map directly into uncertainty in target seismic-scale amplitudes, velocities, or inverted impedances. An important aspect of using rock-physics models in this manner is to determine and understand the significance of the inputs into a rock-physics model under consideration. Such analysis enables the design of prior distributions that are informative within a reservoir-characterization formulation. We use the framework of Bayesian analysis to find internal dependencies and correlations among the inputs. This process requires the assignments of prior distributions, and calculation of the likelihood function, whose product is the posterior distribution. The data are well-log data that come from a hydrocarbon-bearing set of sands from the Gulf of Mexico. The rock-physics model selected is the soft-sand model, which is applicable to the data from the reservoir sands. Results from the Bayesian algorithm are multivariate histograms that demonstrate the most frequent values of the inputs given the data. Four analyses are applied to different subsets of the reservoir sands, and each reveals some correlations among certain model inputs. This quantitative approach points out the significance of a singular or joint set of rock-physics model parameters.


2020 ◽  
Vol 8 (4) ◽  
pp. T1057-T1069
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry Lines

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir development and its management. Among other things, rock-physics analysis is usually carried out to distinguish between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water saturation, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conventional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the prospective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1 of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data, well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic approach for characterization of the target formations of interest may not be appropriate and we build a case for adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassification can be carried out. Using the available log data, multimineral analysis was also carried out using a nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their correlations with the facies information derived from mud log data.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. F165-F171 ◽  
Author(s):  
Ingrid Cordon ◽  
Jack Dvorkin ◽  
Gary Mavko

We perturb the elastic properties and attenuation in the Arctic Mallik methane-hydrate reservoir to produce a set of plausible seismic signatures away from the existing well. These perturbations are driven by the changes we impose on porosity, clay content, hydrate saturation, and geometry. The key is a data-guided, theoretical, rock-physics model that we adopt to link velocity and attenuation to porosity, mineralogy, and amount of hydrate. We find that the seismic amplitude is very sensitive to the hydrate saturation in the host sand and its porosity as well as the porosity of the overburden shale. However, changes to the amount of clay in the sand only weakly alter the amplitude. Attenuation, which may be substantial, must be taken into account during hydrate reservoir characterization because it lowers the amplitude to an extent that may affect the hydrate-volume prediction. The spatial structure of the reservoir affects the seismic reflection: A thinly-layered reservoir produces a noticeably different amplitude than a massive reservoir with the same hydrate volume.


2022 ◽  
Vol 9 ◽  
Author(s):  
Kyle T. Spikes ◽  
Mrinal K. Sen

Correlations of rock-physics model inputs are important to know to help design informative prior models within integrated reservoir-characterization workflows. A Bayesian framework is optimal to determine such correlations. Within that framework, we use velocity and porosity measurements on unconsolidated, dry, and clean sands. Three pressure- and three porosity-dependent rock-physics models are applied to the data to examine relationships among the inputs. As with any Bayesian formulation, we define a prior model and calculate the likelihood in order to evaluate the posterior. With relatively few inputs to consider for each rock-physics model, we found that sampling the posterior exhaustively to be convenient. The results of the Bayesian analyses are multivariate histograms that indicate most likely values of the input parameters given the data to which the rock-physics model was fit. When the Bayesian procedure is repeated many times for the same data, but with different prior models, correlations emerged among the input parameters in a rock-physics model. These correlations were not known previously. Implications, for the pressure- and porosity-dependent models examined here, are that these correlations should be utilized when applying these models to other relevant data sets. Furthermore, additional rock-physics models should be examined similarly to determine any potential correlations in their inputs. These correlations can then be taken advantage of in forward and inverse problems posed in reservoir characterization.


2020 ◽  
Vol 8 (2) ◽  
pp. T275-T291 ◽  
Author(s):  
Kenneth Bredesen ◽  
Esben Dalgaard ◽  
Anders Mathiesen ◽  
Rasmus Rasmussen ◽  
Niels Balling

We have seismically characterized a Triassic-Jurassic deep geothermal sandstone reservoir north of Copenhagen, onshore Denmark. A suite of regional geophysical measurements, including prestack seismic data and well logs, was integrated with geologic information to obtain facies and reservoir property predictions in a Bayesian framework. The applied workflow combined a facies-dependent calibrated rock-physics model with a simultaneous amplitude-variation-with-offset seismic inversion. The results suggest that certain sandstone distributions are potential aquifers within the target interval, which appear reasonable based on the geologic properties. However, prediction accuracy suffers from a restricted data foundation and should, therefore, only be considered as an indicator of potential aquifers. Despite these issues, the results demonstrate new possibilities for future seismic reservoir characterization and rock-physics modeling for exploration purposes, derisking, and the exploitation of geothermal energy as a green and sustainable energy resource.


Geophysics ◽  
2021 ◽  
pp. 1-64
Author(s):  
Qi Hu ◽  
Scott Keating ◽  
Kristopher A. Innanen ◽  
Huaizhen Chen

Quantitative estimation of rock physics properties is an important part of reservoir characterization. Most current seismic workflows in this field are based on amplitude variation with offset. Building on recent work on high resolution multi-parameter inversion for reservoir characterization, we construct a rock-physics parameterized elastic full-waveform inversion (EFWI) scheme. Within a suitably-formed multi-parameter EFWI, in this case a 2D frequency-domain isotropic-elastic FWI with a truncated Gauss-Newton optimization, any rock physics model with a well-defined mapping between its parameters and seismic velocity/density can be examined. We select a three-parameter porosity, clay content, and water saturation (PCS) parameterization, and link them to elastic properties using three representative rock physics models: the Han empirical model, the Voigt-Reuss-Hill boundary model, and the Kuster and Toksöz inclusion model. Numerical examples suggest that conditioning issues, which make a sequential inversion (in which velocities and density are first determined through EFWI, followed by PCS parameters) unstable, are avoided in this direct approach. Significant variability in inversion fidelity is visible from one rock physics model to another. However, the response of the inversion to the range of possible numerical optimization and frequency selections, as well as acquisition geometries, varies widely. Water saturation tends to be the most difficult property to recover in all situations examined. This can be explained with radiation pattern analysis, where very low relative scattering amplitudes from saturation perturbations are observed. An investigation performed with a Bayesian approach illustrates that the introduction of prior information may increase the inversion sensitivity to water saturation


Sign in / Sign up

Export Citation Format

Share Document