scholarly journals Anderson acceleration for seismic inversion

Geophysics ◽  
2021 ◽  
Vol 86 (1) ◽  
pp. R99-R108
Author(s):  
Yunan Yang

State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion.

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2020 ◽  
pp. 1-61
Author(s):  
Janaki Vamaraju ◽  
Jeremy Vila ◽  
Mauricio Araya-Polo ◽  
Debanjan Datta ◽  
Mohamed Sidahmed ◽  
...  

Migration techniques are an integral part of seismic imaging workflows. Least-squares reverse time migration (LSRTM) overcomes some of the shortcomings of conventional migration algorithms by compensating for illumination and removing sampling artifacts to increase spatial resolution. However, the computational cost associated with iterative LSRTM is high and convergence can be slow in complex media. We implement pre-stack LSRTM in a deep learning framework and adopt strategies from the data science domain to accelerate convergence. The proposed hybrid framework leverages the existing physics-based models and machine learning optimizers to achieve better and cheaper solutions. Using a time-domain formulation, we show that mini-batch gradients can reduce the computation cost by using a subset of total shots for each iteration. Mini-batch approach does not only reduce source cross-talk but also is less memory intensive. Combining mini-batch gradients with deep learning optimizers and loss functions can improve the efficiency of LSRTM. Deep learning optimizers such as the adaptive moment estimation are generally well suited for noisy and sparse data. We compare different optimizers and demonstrate their efficacy in mitigating migration artifacts. To accelerate the inversion, we adopt the regularised Huber loss function in conjunction. We apply these techniques to 2D Marmousi and 3D SEG/EAGE salt models and show improvements over conventional LSRTM baselines. The proposed approach achieves higher spatial resolution in less computation time measured by various qualitative and quantitative evaluation metrics.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1183-1195 ◽  
Author(s):  
Kenneth P. Bube ◽  
Robert T. Langan

Least squares or [Formula: see text] solutions of seismic inversion and tomography problems tend to be very sensitive to data points with large errors. The [Formula: see text] minimization for 1 ≤ p < 2 gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) gives efficient approximate solutions to these [Formula: see text] problems. We apply IRLS to a hybrid [Formula: see text] minimization problem that behaves like an [Formula: see text] fit for small residuals and like an [Formula: see text] fit for large residuals. The smooth transition from [Formula: see text] to [Formula: see text] behavior is controlled by a parameter that we choose using an estimate of the standard deviation of the data error. For linear problems of full rank, the hybrid objective function has a unique minimum, and IRLS can be proven to converge to it. We obtain a robust efficient method. For nonlinear problems, a version of the Gauss‐Newton algorithm can be applied. Synthetic crosswell tomography examples and a field‐data VSP tomography example demonstrate the improvement of the hybrid method over least squares when there are outliers in the data.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 72
Author(s):  
Siti Farhana Husin ◽  
Mustafa Mamat ◽  
Mohd Asrul Hery Ibrahim ◽  
Mohd Rivaie

In this paper, we develop a new search direction for Steepest Descent (SD) method by replacing previous search direction from Conjugate Gradient (CG) method, , with gradient from the previous step,  for solving large-scale optimization problem. We also used one of the conjugate coefficient as a coefficient for matrix . Under some reasonable assumptions, we prove that the proposed method with exact line search satisfies descent property and possesses the globally convergent. Further, the numerical results on some unconstrained optimization problem show that the proposed algorithm is promising. 


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S115-S134
Author(s):  
Wenlei Gao ◽  
Gian Matharu ◽  
Mauricio D. Sacchi

Least-squares reverse time migration (LSRTM) has become increasingly popular for complex wavefield imaging due to its ability to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy data, and improve spatial resolution. The major drawback of LSRTM is the considerable computational cost incurred by performing migration/demigration at each iteration of the optimization. To ameliorate the computational cost, we introduced a fast method to solve the LSRTM problem in the image domain. Our method is based on a new factorization that approximates the Hessian using a superposition of Kronecker products. The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the factorization is able to honor the characteristic block-band structure of the Hessian. We have developed a computationally efficient algorithm to estimate the Kronecker factors via low-rank matrix completion. The completion algorithm uses only a small percentage of preferentially sampled elements of the Hessian matrix. Element sampling requires computation of the source and receiver Green’s functions but avoids explicitly constructing the entire Hessian. Our Kronecker-based factorization leads to an imaging technique that we name Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is fast because we replace computationally expensive migration/demigration operations with fast matrix multiplications involving small matrices. We first validate the efficacy of our method by explicitly computing the Hessian for a small problem. Subsequent 2D numerical tests compare LSRTM with KLSRTM for several benchmark models. We observe that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computational cost (approximately 5–15× faster); however, KLSRTM has an increased, yet manageable, memory cost.


2014 ◽  
Vol 2014 ◽  
pp. 1-19
Author(s):  
Lu-Chuan Ceng ◽  
Cheng-Wen Liao ◽  
Chin-Tzong Pang ◽  
Ching-Feng Wen

We introduce and analyze a hybrid steepest-descent algorithm by combining Korpelevich’s extragradient method, the steepest-descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to the unique solution of a triple hierarchical constrained optimization problem (THCOP) over the common fixed point set of finitely many nonexpansive mappings, with constraints of finitely many generalized mixed equilibrium problems (GMEPs), finitely many variational inclusions, and a convex minimization problem (CMP) in a real Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document