Reservoir-oriented wave-equation-based seismic amplitude variation with offset inversion

2017 ◽  
Vol 5 (3) ◽  
pp. SL43-SL56 ◽  
Author(s):  
Dries Gisolf ◽  
Peter R. Haffinger ◽  
Panos Doulgeris

Wave-equation-based amplitude-variation-with-offset (AVO) inversion solves the full elastic wave equation, for the properties as well as the total wavefield in the object domain, from a set of observations. The relationship between the data and the property set to invert for is essentially nonlinear. This makes wave-equation-based inversion a nonlinear process. One way of visualizing this nonlinearity is by noting that all internal multiple scattering and mode conversions, as well as traveltime differences between the real medium and the background medium, are accounted for by the wave equation. We have developed an iterative solution to this nonlinear inversion problem that seems less likely to be trapped in local minima. The surface recorded data are preconditioned to be more representative for the target interval, by redatuming, or migration. The starting model for the inversion is a very smooth (0–4 Hz) background model constructed from well data. Depending on the data quality, the nonlinear inversion may even update the background model, leading to a broadband solution. Because we are dealing with the elastic wave equation and not a linearized data model in terms of primary reflections, the inversion solves directly for the parameters defining the wave equation: the compressibility (1/bulk modulus) and the shear compliance (1/shear modulus). These parameters are much more directly representative for hydrocarbon saturation, porosity, and lithology, than derived properties such as acoustic and shear impedance that logically follow from the linearized reflectivity model. Because of the strongly nonlinear character of time-lapse effects, wave-equation based AVO inversion is particularly suitable for time-lapse inversion. Our method is presented and illustrated with some synthetic data and three real data case studies.

Geophysics ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. T469-T485
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

We have developed a pseudoelastic wave equation describing pure pressure waves propagating in elastic media. The pure pressure-mode (P-mode) wave equation uses all of the elastic parameters (such as density and the P- and S-wave velocities). It produces the same amplitude variation with offset (AVO) effects as PP-reflections computed by the conventional elastic wave equation. Because the new wave equation is free of S-waves, it does not require finer grids for simulation. This leads to a significant computational speedup when the ratio of pressure to S-wave velocities is large. We test the performance of our method on a simple synthetic model with high-velocity contrasts. The amplitude admitted by the pseudoelastic pure P-mode wave equation is highly consistent with that associated with the conventional elastic wave equation over a large range of incidence angles. We further verify our method’s robustness and accuracy using a more complex and realistic 2D salt model from the SEG Advanced Modeling Program. The ideal AVO behavior and computational advantage make our wave equation a good candidate as a forward simulation engine for performing elastic full-waveform inversion, especially for marine streamer data sets.


2017 ◽  
Vol 5 (3) ◽  
pp. SL57-SL67 ◽  
Author(s):  
Guangsen Cheng ◽  
Xingyao Yin ◽  
Zhaoyun Zong

Prestack seismic inversion is widely used in fluid indication and reservoir prediction. Compared with linear inversion, nonlinear inversion is more precise and can be applied to high-contrast situations. The inversion results can be affected by the parameters’ sensitivity, so the parameterization of nonlinear equations is very significant. Considering the poor nonlinear amplitude-variation-with-offset (AVO) inversion results of impedance and velocity parameters, we adjust the parameters of the nonlinear equation, avoid the inaccuracy caused by parameters sensitivity and get the ideal nonlinear AVO inversion results of the Lamé parameters. The feasibility and stability of the nonlinear equation based on the Lamé parameters and method are verified by the model and the real data examples. The resolution and the lateral continuity of nonlinear inversion results are better compared with the linear inversion results.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. N55-N79
Author(s):  
Longxiao Zhi ◽  
Hanming Gu

In time-lapse seismic analysis, the Zoeppritz equations are usually used in the time-lapse amplitude variation with offset (AVO) inversion and then combined with a rock-physical model to estimate the reservoir-parameter changes. The real-life reservoir is a two-phase medium that consists of solid and fluid components. The Zoeppritz equations are a simplification, assuming a single-phase solid medium, in which the properties of this medium are estimated by effective parameters from the combined components. This means that the Zoeppritz equations cannot describe the characteristics of the seismic reflection amplitudes in the reservoir in an accurate way. Therefore, we develop a method for time-lapse AVO inversion in two-phase media using the Bayesian theory to estimate the reservoir parameters and their changes quantitatively. We use a reflection-coefficient equation in two-phase media, a rock-physical model, and the convolutional model to build a relationship between the seismic records and reservoir parameters, which include porosity, clay content, saturation, and pressure. Assuming that the seismic-data errors follow a zero-mean Gaussian distribution and that the reservoir parameters follow a four-variable Cauchy prior distribution, we use the Bayesian theory to construct the objective function for the AVO inversion, and we also add a model-constraint term to compensate the low-frequency information and improve the stability of the inversion. Using the objective function of the AVO inversion and the Gauss-Newton method, we derived the equation for time-lapse AVO inversion. This result can be used to estimate the reservoir parameters and their changes accurately and in a stable way. The test results from the feasibility study on synthetic and field data proved that the method is effective and reliable.


2022 ◽  
Author(s):  
P. Haffinger ◽  
D. Gisolf ◽  
J. Coffin ◽  
N. Chasnikov ◽  
P. Doulgeris

Sign in / Sign up

Export Citation Format

Share Document