scholarly journals Pseudoelastic pure P-mode wave equation

Geophysics ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. T469-T485
Author(s):  
Bingbing Sun ◽  
Tariq Alkhalifah

We have developed a pseudoelastic wave equation describing pure pressure waves propagating in elastic media. The pure pressure-mode (P-mode) wave equation uses all of the elastic parameters (such as density and the P- and S-wave velocities). It produces the same amplitude variation with offset (AVO) effects as PP-reflections computed by the conventional elastic wave equation. Because the new wave equation is free of S-waves, it does not require finer grids for simulation. This leads to a significant computational speedup when the ratio of pressure to S-wave velocities is large. We test the performance of our method on a simple synthetic model with high-velocity contrasts. The amplitude admitted by the pseudoelastic pure P-mode wave equation is highly consistent with that associated with the conventional elastic wave equation over a large range of incidence angles. We further verify our method’s robustness and accuracy using a more complex and realistic 2D salt model from the SEG Advanced Modeling Program. The ideal AVO behavior and computational advantage make our wave equation a good candidate as a forward simulation engine for performing elastic full-waveform inversion, especially for marine streamer data sets.

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R827-R844 ◽  
Author(s):  
Zongcai Feng ◽  
Gerard Schuster

We present a quasi-elastic wave equation as a function of the pressure variable, which can accurately model PP reflections with elastic amplitude variation with offset effects under the first-order Born approximation. The kinematic part of the quasi-elastic wave equation accurately models the propagation of P waves, whereas the virtual-source part, which models the amplitudes of reflections, is a function of the perturbations of density and Lamé parameters [Formula: see text] and [Formula: see text]. The quasi-elastic wave equation generates a scattering radiation pattern that is exactly the same as that for the elastic wave equation, and only requires the solution of two acoustic wave equations for each shot gather. This means that the quasi-elastic wave equation can be used for true-amplitude linearized waveform inversion (also known as least-squares reverse time migration) of elastic PP reflections, in which the corresponding misfit gradients are with respect to the perturbations of density and the P- and S-wave impedances. The perturbations of elastic parameters are iteratively updated by minimizing the [Formula: see text]-norm of the difference between the recorded PP reflections and the predicted pressure data modeled from the quasi-elastic wave equation. Numerical tests on synthetic and field data indicate that true-amplitude linearized waveform inversion using the quasi-elastic wave equation can account for the elastic PP amplitudes and provide a robust estimate of the perturbations of P- and S-wave impedances and, in some cases, the density. In addition, true-amplitude linearized waveform inversion provides images with a wider bandwidth and fewer artifacts because the PP amplitudes are accurately explained. We also determine the 2D scalar quasi-elastic wave equation for P-SV reflections and the 3D vector equation for PS reflections.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T209-T234 ◽  
Author(s):  
Jing-Bo Chen ◽  
Jian Cao

Because of its high computational cost, we needed to develop an efficient numerical scheme for the frequency-domain 3D elastic wave equation. In addition, the numerical scheme should be applicable to media with a liquid-solid interface. To address these two issues, we have developed a new average-derivative optimal 27-point scheme with arbitrary directional grid intervals and a corresponding numerical dispersion analysis for the frequency-domain 3D elastic wave equation. The novelty of this scheme is that its optimal coefficients depend on the ratio of the directional grid intervals and Poisson’s ratio. In this way, this scheme can be applied to media with a liquid-solid interface and a computational grid with arbitrary directional grid intervals. For media with a variable Poisson’s ratio, we have developed an effective and stable interpolation method for optimization coefficients. Compared with the classic 19-point scheme, this new scheme reduces the required number of grid points per wavelength for equal and unequal directional grid intervals. The reduction of the number of grid points increases as the Poisson’s ratio becomes larger. In particular, the numerical S-wave phase velocity of this new scheme becomes zero, whereas the classic 19-point scheme produces a spurious numerical S-wave phase velocity, as Poisson’s ratio reaches 0.5. We have performed numerical examples to develop the theoretical analysis.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. T339-T356 ◽  
Author(s):  
Jing-Bo Chen ◽  
Jian Cao

Based on an average-derivative method, we developed a new nine-point numerical scheme for a frequency-domain elastic-wave equation. Compared with the classic nine-point scheme, this scheme reduces the required number of grid points per wavelength for equal and unequal directional spacings. The reduction in the number of grid points increases as the Poisson’s ratio becomes larger. In particular, as the Poisson’s ratio reaches 0.5, the numerical S-wave phase velocity of this new scheme becomes zero, whereas the classical scheme produces spurious numerical S-wave phase velocity. Numerical examples demonstrate that this new scheme produces more accurate results than the classical scheme at approximately the same computational cost.


2017 ◽  
Vol 5 (3) ◽  
pp. SL43-SL56 ◽  
Author(s):  
Dries Gisolf ◽  
Peter R. Haffinger ◽  
Panos Doulgeris

Wave-equation-based amplitude-variation-with-offset (AVO) inversion solves the full elastic wave equation, for the properties as well as the total wavefield in the object domain, from a set of observations. The relationship between the data and the property set to invert for is essentially nonlinear. This makes wave-equation-based inversion a nonlinear process. One way of visualizing this nonlinearity is by noting that all internal multiple scattering and mode conversions, as well as traveltime differences between the real medium and the background medium, are accounted for by the wave equation. We have developed an iterative solution to this nonlinear inversion problem that seems less likely to be trapped in local minima. The surface recorded data are preconditioned to be more representative for the target interval, by redatuming, or migration. The starting model for the inversion is a very smooth (0–4 Hz) background model constructed from well data. Depending on the data quality, the nonlinear inversion may even update the background model, leading to a broadband solution. Because we are dealing with the elastic wave equation and not a linearized data model in terms of primary reflections, the inversion solves directly for the parameters defining the wave equation: the compressibility (1/bulk modulus) and the shear compliance (1/shear modulus). These parameters are much more directly representative for hydrocarbon saturation, porosity, and lithology, than derived properties such as acoustic and shear impedance that logically follow from the linearized reflectivity model. Because of the strongly nonlinear character of time-lapse effects, wave-equation based AVO inversion is particularly suitable for time-lapse inversion. Our method is presented and illustrated with some synthetic data and three real data case studies.


1994 ◽  
Author(s):  
Changxi Zhou ◽  
Gerard T. Schuster ◽  
Siamak Hassanzadeh

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. C85-C94 ◽  
Author(s):  
Houzhu (James) Zhang ◽  
Hongwei Liu ◽  
Yang Zhao

Seismic anisotropy is an intrinsic elastic property. Appropriate accounting of anisotropy is critical for correct and accurate positioning seismic events in reverse time migration. Although the full elastic wave equation may serve as the ultimate solution for modeling and imaging, pseudoelastic and pseudoacoustic wave equations are more preferable due to their computation efficiency and simplicity in practice. The anisotropic parameters and their relations are not arbitrary because they are constrained by the energy principle. Based on the investigation of the stability condition of the pseudoelastic wave equations, we have developed a set of explicit formulations for determining the S-wave velocity from given Thomsen’s parameters [Formula: see text] and [Formula: see text] for vertical transverse isotropy and tilted transverse isotropy media. The estimated S-wave velocity ensures that the wave equations are stable and well-posed in the cases of [Formula: see text] and [Formula: see text]. In the case of [Formula: see text], a common situation in carbonate, a positive value of S-wave velocity is needed to avoid the wavefield instability. Comparing the stability constraints of the pseudoelastic- with the full-elastic wave equation, we conclude that the feasible range of [Formula: see text] and [Formula: see text] was slightly larger for the pseudoelastic assumption. The success of achieving high-accuracy images and high-quality angle gathers using the proposed constraints is demonstrated in a synthetic example and a field example from Saudi Arabia.


Author(s):  
Amila Sudu Ambegedara ◽  
U. G. I. G. K. Udagedara ◽  
Erik M. Bollt

Full-waveform inversion (FWI) is a non-destructive health monitoring technique that can be used to identify and quantify the embedded anomalies. The forward modeling of the FWI consists of a simulation of elastic wave equation to generate synthetic data. Thus the accuracy of the FWI method highly depends on the simulation method used in the forward modeling. Simulation of a 3-D seismic survey with small-scale heterogeneities is impossible with the classic finite difference approach even on modern super computers. In this work, we adopted a mesh refinement approach for simulation of the wave equation in the presence of small-scale heterogeneities. This approach uses cubic smoothing spline interpolation for spatial mesh refinement step in solving the wave equation. The simulation results for the 2-D elastic wave equation are presented and compared with the classic finite difference approach.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. U51-U61
Author(s):  
Xufei Gong ◽  
Qizhen Du ◽  
Qiang Zhao ◽  
Pengyuan Sun ◽  
Jianlei Zhang ◽  
...  

Wave-equation datuming (WED) techniques have demonstrated superiority when waves occur on the acquisition surface nonvertically, and traditional static corrections based on the time shift become inaccurate. Meanwhile, as for multicomponent data, those scalar techniques can hardly maintain the vector characteristics for the following multicomponent data processing flows. Considering this, we have developed an elastic-wave datuming approach to handle the static corrections for multicomponent data. Different from those existing scalar WED techniques, the multicomponent data are first decomposed into multicomponent P- and S-wave data. Then, the decomposed data are transformed into the [Formula: see text]-[Formula: see text] domain, and they are extrapolated from the acquisition surface to the datum using the one-way elastic-wave continuation. Finally, the datumed multicomponent data are reconstructed at the output datum by adding up the datumed P- and S-wave data. This elastic WED can guarantee that the same wave modes on different components are equally datumed, and the data remain multicomponent so that they are still applicable to multicomponent-joint processing techniques. Finally, several test examples involved in this paper have proved our method’s effectiveness in multicomponent data datuming application.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1515-1518 ◽  
Author(s):  
Robert Sun ◽  
Jinder Chow ◽  
Kuang‐Jung Chen

Two‐dimensional elastic data containing reflected P‐waves and converted S‐wave generated by a P‐source may be separated using dilatation and rotation calculation (Sun, 1999). The algorithm is a combination of elastic full wavefield extrapolation (Sun and McMechan, 1986; Chang and McMechan, 1987, 1994) and wave‐type separation using dilatation (divergence) and rotation (curl) calculations (Dellinger and Etgen, 1990). It includes (1) downward extrapolating the (multicomponent) elastic data in an elastic velocity model using the elastic wave equation, (2) calculating the dilatation to represent pure P‐waves and calculating the rotation to represent pure S‐waves at some depth, and (3) upward extrapolating the dilatation in a P‐velocity model and upward extrapolating the rotation in an S‐velocity model, using the acoustic wave equation for each.


Sign in / Sign up

Export Citation Format

Share Document