Full elastic wave-equation based seismic-to-well tying: A real data example from onshore Australia

Author(s):  
P. Haffinger ◽  
D. Gisolf ◽  
J. Coffin ◽  
N. Chasnikov ◽  
P. Doulgeris
1995 ◽  
Vol 98 (5) ◽  
pp. 2953-2953
Author(s):  
Raymond J. Nagem ◽  
Ding Lee ◽  
Gongquin Li

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. T209-T234 ◽  
Author(s):  
Jing-Bo Chen ◽  
Jian Cao

Because of its high computational cost, we needed to develop an efficient numerical scheme for the frequency-domain 3D elastic wave equation. In addition, the numerical scheme should be applicable to media with a liquid-solid interface. To address these two issues, we have developed a new average-derivative optimal 27-point scheme with arbitrary directional grid intervals and a corresponding numerical dispersion analysis for the frequency-domain 3D elastic wave equation. The novelty of this scheme is that its optimal coefficients depend on the ratio of the directional grid intervals and Poisson’s ratio. In this way, this scheme can be applied to media with a liquid-solid interface and a computational grid with arbitrary directional grid intervals. For media with a variable Poisson’s ratio, we have developed an effective and stable interpolation method for optimization coefficients. Compared with the classic 19-point scheme, this new scheme reduces the required number of grid points per wavelength for equal and unequal directional grid intervals. The reduction of the number of grid points increases as the Poisson’s ratio becomes larger. In particular, the numerical S-wave phase velocity of this new scheme becomes zero, whereas the classic 19-point scheme produces a spurious numerical S-wave phase velocity, as Poisson’s ratio reaches 0.5. We have performed numerical examples to develop the theoretical analysis.


2019 ◽  
Vol 219 (3) ◽  
pp. 1900-1914 ◽  
Author(s):  
T Möller ◽  
W Friederich

SUMMARY An existing nodal discontinuous Galerkin (NDG) method for the simulation of seismic waves in heterogeneous media is extended to media containing fractures with various rheological behaviour. Fractures are treated as 2-D surfaces where Schoenberg’s linear slip or displacement discontinuity condition is applied as an additional boundary condition to the elastic wave equation which is in turn implemented as an additional numerical flux within the NDG formulation. Explicit expressions for the new numerical flux are derived by considering the Riemann problem for the elastic wave equation at fractures with varying rheologies. In all cases, we obtain further first order differential equations that fully describe the temporal evolution of the particle velocity jump at the fracture. Our flux formulation allows to separate the effect of a fracture from flux contributions due to simple welded interfaces enabling us to easily declare element faces as parts of a fracture. We make use of this fact by first generating the numerical mesh and then building up fractures by selecting appropriate element faces instead of adjusting the mesh to pre-defined fracture surfaces. The implementation of the new numerical fluxes into NDG is verified in 1-D by comparison to an analytical solution and in 2-D by comparing the results of a simulation valid in 1-D and 2-D. Further numerical examples address the effect of fracture systems on seismic wave propagation in 1-D and 2-D featuring effective anisotropy and coda generation. Finally, a study of the reflective and transmissive behaviour of fractures indicates that reflection and transmission coefficients are controlled by the ratio of signal frequency and relaxation frequency of the fracture.


Sign in / Sign up

Export Citation Format

Share Document