Seismic characteristics and sedimentary record of the late Pleistocene delta offshore southwestern Hainan Island, northwestern South China Sea

2018 ◽  
Vol 6 (4) ◽  
pp. SO31-SO43 ◽  
Author(s):  
Yingci Feng ◽  
Wenhuan Zhan ◽  
Hongjun Chen ◽  
Tao Jiang ◽  
Jinchang Zhang ◽  
...  

A late Pleistocene delta (Hainan palaeo river delta, HNPD hereafter) exceeding [Formula: see text] offshore Hainan Island, northwestern South China Sea (SCS), is investigated using high-resolution seismic and core data to understand the relationship between subaqueous delta development and climate drivers during the Last Glacial Period. The seismic data indicate general progradational configurations toward the southwest or southeast, indicating that the sediments from the eastern slope offshore southwestern Hainan Island were transported southwestward and southeastward. The average thickness of the delta sediment is approximately 35 m, and it has an arcuate shape surrounding the eastern slope. Therefore, the sediment provenances of the HNPD were mainly from the Red River drainage and Hainan Island. Comparison between the core dating results and the global sea-level curve indicates that the delta formed mainly during marine isotope stage 4 (65–56 ka). The topography of the basin, the sea-level change from low stand to high stand, and the southward oceanic currents driven by the glacial-period strong winter monsoon all contributed to the formation of the delta. Because the development of the delta required large riverine sediment input, we speculate that the main reason that the delta’s development ceased was the migration of the river channel along the eastern slope. Based on a comparison between the palaeobathymetric scenarios derived from published sea-level curves and the delta stratigraphy identified from the seismic profiles and cores, we have determined a possible range of relative sea level between 65 and 56 ka for the southwestern coast of Hainan Island, which might also be applicable for a broader region, i.e., the northern SCS.

2020 ◽  
Vol 201 ◽  
pp. 104502 ◽  
Author(s):  
Ryszard K. Borówka ◽  
Andrzej Osadczuk ◽  
Zhao Li ◽  
Jakub Miluch ◽  
Krystyna Osadczuk ◽  
...  

2020 ◽  
pp. 104626 ◽  
Author(s):  
Andreas Wetzel ◽  
Agata Feldens ◽  
Daniel Unverricht ◽  
Karl Stattegger ◽  
Rik Tjallingii

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 766
Author(s):  
Yi Jiang ◽  
Shuai Han ◽  
Chunxiang Shi ◽  
Tao Gao ◽  
Honghui Zhen ◽  
...  

Near-surface wind data are particularly important for Hainan Island and the South China Sea, and there is a wide range of wind data sources. A detailed understanding of the reliability of these datasets can help us to carry out related research. In this study, the hourly near-surface wind data from the High-Resolution China Meteorological Administration (CMA) Land Data Assimilation System (HRCLDAS) and the fifth-generation ECMWF atmospheric reanalysis data (ERA5) were evaluated by comparison with the ground automatic meteorological observation data for Hainan Island and the South China Sea. The results are as follows: (1) the HRCLDAS and ERA5 near-surface wind data trend was basically the same as the observation data trend, but there was a smaller bias, smaller root-mean-square errors, and higher correlation coefficients between the near-surface wind data from HRCLDAS and the observations; (2) the quality of HRCLDAS and ERA5 near-surface wind data was better over the islands of the South China Sea than over Hainan Island land. However, over the coastal areas of Hainan Island and island stations near Sansha, the quality of the HRCLDAS near-surface wind data was better than that of ERA5; (3) the quality of HRCLDAS near-surface wind data was better than that of ERA5 over different types of landforms. The deviation of ERA5 and HRCLDAS wind speed was the largest along the coast, and the quality of the ERA5 wind direction data was poorest over the mountains, whereas that of HRCLDAS was poorest over hilly areas; (4) the accuracy of HRCLDAS at all wind levels was higher than that of ERA5. ERA5 significantly overestimated low-grade winds and underestimated high-grade winds. The accuracy of HRCLDAS wind ratings over the islands of the South China Sea was significantly higher than that over Hainan Island land, especially for the higher wind ratings; and (5) in the typhoon process, the simulation of wind by HRCLDAS was closer to the observations, and its simulation of higher wind speeds was more accurate than the ERA5 simulations.


The Holocene ◽  
2021 ◽  
pp. 095968362110332
Author(s):  
Tingli Yan ◽  
Kefu Yu ◽  
Rui Wang ◽  
Wenhui Liu ◽  
Leilei Jiang

Beachrock is considered a good archive for past sea-levels because of its unique formation position (intertidal zone). To evaluate sea-level history in the northern South China Sea, three well-preserved beachrock outcrops (Beigang, Gongshanbei, and Hengling) at Weizhou Island, northern South China Sea were selected to examine their relative elevation, sedimentological, mineralogical, and geochemical characteristics. Acropora branches with well-preserved surface micro-structures were selected from the beachrocks and used to determine the ages of these beachrocks via U-series dating. The results show that the beachrocks are composed of coral reef sediments, terrigenous clastics, volcanic clastics, and various calcite cements. These sediments accumulated in the intertidal zone of Weizhou Island were then cemented in a meteoric water environment. The U-series ages of beachrocks from Beigang, Gongshanbei, and Hengling are 1712–768 ca. BP, 1766–1070 ca. BP, and 1493–604 ca. BP (before 1950 AD) respectively. Their elevations are 0.91–1.16 m, 0.95–1.24 m, and 0.82–1.17 m higher than the modern homologous sedimentary zones, respectively. Therefore, we concluded that the sea-level in the Meghalayan age (1766–604 ca. BP) was 0.82–1.24 m higher than the present, and that the sea-level over this period showed a declining trend.


2017 ◽  
Vol 36 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Hui Wang ◽  
Kexiu Liu ◽  
Zhigang Gao ◽  
Wenjing Fan ◽  
Shouhua Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document