Numerical solution of the acoustic wave equation by the rapid expansion method (REM) - A one step time evolution algorithm

2009 ◽  
Author(s):  
Paul L. Stoffa* ◽  
Reynam C. Pestana
2016 ◽  
Vol 34 (4) ◽  
Author(s):  
Laura Lara Ortiz ◽  
Reynam C. Pestana

ABSTRACT. In this work we show that the solution of the first order differential wave equation for an analytical wavefield, using a finite-difference scheme in time, follows exactly the same recursion of modified Chebyshev polynomials. Based on this, we proposed a numerical...Keywords: seismic modeling, acoustic wave equation, analytical wavefield, Chebyshev polinomials. RESUMO. Neste trabalho, mostra-se que a solução da equação de onda de primeira ordem com um campo de onda analítico usando um esquema de diferenças finitas no tempo segue exatamente a relação de recorrência dos polinômios modificados de Chebyshev. O algoritmo...Palavras-chave: modelagem sísmica, equação da onda acústica, campo analítico, polinômios de Chebyshev.


Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. T121-T131 ◽  
Author(s):  
Reynam C. Pestana ◽  
Paul L. Stoffa

Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved.


Sign in / Sign up

Export Citation Format

Share Document