Interferometry of ambient noise from a trenched distributed acoustic sensing array

Author(s):  
E.R. Martin* ◽  
J. Ajo-Franklin ◽  
S. Dou ◽  
N. Lindsey ◽  
T.M. Daley ◽  
...  
2020 ◽  
Author(s):  
Juan Pablo Aguilar-López ◽  
Andres Garcia-Ruiz ◽  
Thom Bogaard ◽  
Miguel Gonzalez-Herraez

<p>Backward piping erosion (BEP) is considered the most dangerous failure mode for levees due to its unpredictable nature. This erosive process happens most of the time underneath the impermeable layers on which levees are commonly founded. This makes it very difficult to detect as conventional geophysical methods are either too expensive or too imprecise for real time monitoring of longitudinal soil made structures such as Dams or levees. Fiber optic based distributed acoustic sensing (DAS) is an innovative technology which allows to retrieve information from an acoustic propagating medium in a spatially dense manner by using a fiber optic cable. The present study aimed to explore the potential of DAS for early detection of BEP  under levees based on the frictional emissions of the sand grains during the erosive process. The tests were performed in the lab under controlled ambient noise conditions. The technology was tested by embedding fiber optic based microphones underneath and outside a laboratory scaled aquifer set up capable of recreating BEP. The results show that indeed the process emits certain characteristic frequencies which may be located between 1200 to 1600 Hz and and that they can easily be captured by the fiber optic cables.</p>


Author(s):  
J. Ajo-Franklin* ◽  
N. Lindsey ◽  
T.M. Daley ◽  
B. Freifeld ◽  
M. Robertson ◽  
...  

2021 ◽  
Author(s):  
Itzhak Lior ◽  
Diego Mercerat ◽  
Diane Rivet ◽  
Anthony Sladen ◽  
Jean-Paul Ampuero

Distributed acoustic sensing is an ideal tool for ambient noise tomography owing to the dense spatial measurements and the ability to continuously record in harsh environments, such as underwater. We demonstrate the ability to image a complex underwater basin using ambient noise recorded on a fiber deployed offshore Greece. A two-dimensional shear-wave velocity model was derived by analyzing Scholte-wave dispersion. In addition, extremely detailed frequency-dependent resonance and wave propagation characteristics were revealed by computing power spectral densities (PSD) and auto-correlations (AC), respectively. These observations provide crucial information on lateral and vertical wave propagation, and were used to further constrain the velocity model. The analysis reveals significant lateral variations across the short 2.5 km long fiber segment, including basin edge effects and scattered waves. Waveform simulations further support the obtained model. Our results demonstrate the advantages of incorporating PSD and AC observations into ambient noise-based imaging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Feng Cheng ◽  
Benxin Chi ◽  
Nathaniel J. Lindsey ◽  
T. Craig Dawe ◽  
Jonathan B. Ajo-Franklin

AbstractThe sparsity of permanent seismic instrumentation in marine environments often limits the availability of subsea information on geohazards, including active fault systems, in both time and space. One sensing resource that provides observational access to the seafloor environment are existing networks of ocean bottom fiber optic cables; these cables, coupled to modern distributed acoustic sensing (DAS) systems, can provide dense arrays of broadband seismic observations capable of recording both seismic events and the ambient noise wavefield. Here, we report a marine DAS application which demonstrates the strength and limitation of this new technique on submarine structural characterization. Based on ambient noise DAS records on a 20 km section of a fiber optic cable offshore of Moss Landing, CA, in Monterey Bay, we extract Scholte waves from DAS ambient noise records using interferometry techniques and invert the resulting multimodal dispersion curves to recover a high resolution 2D shear-wave velocity image of the near seafloor sediments. We show for the first time that the migration of coherently scattered Scholte waves observed on DAS records can provide an approach for resolving sharp lateral contrasts in subsurface properties, particularly shallow faults and depositional features near the seafloor. Our results provide improved constraints on shallow submarine features in Monterey Bay, including fault zones and paleo-channel deposits, thus highlighting one of many possible geophysical uses of the marine cable network.


2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


Sign in / Sign up

Export Citation Format

Share Document