High‐Resolution Shallow Structure at Brady Hot Springs Using Ambient Noise Tomography (ANT) on a Trenched Distributed Acoustic Sensing (DAS) Array

Author(s):  
Xiangfang Zeng ◽  
Clifford H. Thurber ◽  
Herbert F. Wang ◽  
Dante Fratta ◽  
Kurt L. Feigl
2021 ◽  
Author(s):  
Nicola Piana Agostinetti ◽  
Alberto Villa ◽  
Gilberto Saccorotti

Abstract. We use PoroTOMO experimental data to compare the performance of Distributed Acoustic Sensing (DAS) and geophone data in executing standard exploration and monitoring activities. The PoroTOMO experiment consists of two "seismic systems": (a) a 8.6 km long optical fibre cable deployed across the Brady geothermal field and covering an area of 1.5 x 0.5 km with 100 m long segments, and (b) an array of 238 co-located geophones with an average spacing of 60 m. The PoroTOMO experiment recorded continuous seismic data between March 10th and March 25th 2016. During such period, a ML 4.3 regional event occurred in the southwest, about 150 km away from the geothermal field, together with several microseismic local events related to the geothermal activity. The seismic waves generated from such seismic events have been used as input data in this study. For the exploration tasks, we compare the propagation of the ML 4.3 event across the geothermal field in both seismic systems in term of relative time-delay, for a number of configurations and segments. Defined the propagation, we analyse and compare the amplitude and the signal-to-noise ratio (SNR) of the P-wave in the two systems at high resolution. For testing the potential in monitoring local seismicity, we first perform an analysis of the geophone data for locating a microseismic event, based on expert opinion. Then, we a adopt different workflow for the automatic location of the same microseismic event using DAS data. For testing the potential in monitoring distant event, data from the regional earthquake are used for retrieving both the propagation direction and apparent velocity of the wavefield, using a standard plane-wave-fitting approach. Our results indicate that: (1) at a local scale, the seismic P-waves propagation and their characteristics (i.e. SNR and amplitude) along a single cable segment are robustly consistent with recordings from co-located geophones (delay-times δt ∼ 0.3 over 400 m for both seismic systems) ; (2) the interpretation of seismic wave propagation across multiple separated segments is less clear, due to the heavy contamination of scattering sources and local velocity heterogeneities; nonetheless, results from the plane-wave fitting still indicate the possibility for a consistent detection and location of the event; (3) at high-resolution (10 m), large amplitude variations along the fibre cable seem to robustly correlate with near surface geology; (4) automatic monitoring of microseismicity can be performed with DAS recordings with results comparable to manual analysis of geophone recordings (i.e. maximum horizontal error on event location around 70 m for both geophones and DAS data) ; and (5) DAS data pre-conditioning (e.g., temporal sub-sampling and channel-stacking) and dedicated processing techniques are strictly necessary for making any real-time monitoring procedure feasible and trustable.


2020 ◽  
Author(s):  
Ehsan Qorbani ◽  
Dimitri Zigone ◽  
Mark R. Handy ◽  
Götz Bokelmann ◽  

Abstract. We study the crustal structure under the Eastern and Southern Alps using ambient noise tomography. We use cross-correlations of ambient seismic noise between pairs of 71 permanent stations and 19 stations of the EASI profile to derive new high-resolution 3-D shear-velocity models for the crust. Continuous records from 2014 and 2015 are cross-correlated to estimate Green's functions of Rayleigh and Love waves propagating between the station pairs. Group velocities extracted from the cross-correlations are inverted to obtain isotropic 3-D Rayleigh and Love-wave shear-wave velocity models. Our high resolution models image several velocity anomalies and contrasts and reveal details of the crustal structure. Velocity variations at short periods correlate very closely with the lithologies of tectonic units at the surface and projected to depth. Low-velocity zones, associated with the Po and Molasse sedimentary basins, are imaged well to the south and north of the Alps, respectively. We find large high-velocity zones associated with the crystalline basement that forms the core of the Tauern Window. Small-scale velocity anomalies are also aligned with geological units such as the Ötztal and the Gurktal nappes of the Austroalpine nappes. Clear velocity contrasts in the Tauern Window along vertical cross-sections of the velocity model show the depth extent of the tectonic units and their bounding faults. A mid-crustal velocity contrast is interpreted as a manifestation of intracrustal decoupling in the Eastern Alps and decoupling between the Southern and Eastern Alps.


2021 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
Makky Sandra Jaya ◽  
M Hafizal Zahir ◽  
M Faizal Rahim

Abstract The performance of pre-stack depth migration (PSDM) on the fiber optic, distributed acoustic sensing (DAS), vertical seismic profile (VSP) data has rarely been reported. We show the results of PSDM for the fiber optic cables, newly developed and tested at a field in Canada. We apply Kirchhoff migration, Fresnel volume migration and reverse time migration (RTM) to the walkway VSP data to obtain high resolution images of the shallow to deeper structures and provide the performance analysis of the migration methods for the DAS VSP data.


2020 ◽  
Author(s):  
Juan Pablo Aguilar-López ◽  
Andres Garcia-Ruiz ◽  
Thom Bogaard ◽  
Miguel Gonzalez-Herraez

<p>Backward piping erosion (BEP) is considered the most dangerous failure mode for levees due to its unpredictable nature. This erosive process happens most of the time underneath the impermeable layers on which levees are commonly founded. This makes it very difficult to detect as conventional geophysical methods are either too expensive or too imprecise for real time monitoring of longitudinal soil made structures such as Dams or levees. Fiber optic based distributed acoustic sensing (DAS) is an innovative technology which allows to retrieve information from an acoustic propagating medium in a spatially dense manner by using a fiber optic cable. The present study aimed to explore the potential of DAS for early detection of BEP  under levees based on the frictional emissions of the sand grains during the erosive process. The tests were performed in the lab under controlled ambient noise conditions. The technology was tested by embedding fiber optic based microphones underneath and outside a laboratory scaled aquifer set up capable of recreating BEP. The results show that indeed the process emits certain characteristic frequencies which may be located between 1200 to 1600 Hz and and that they can easily be captured by the fiber optic cables.</p>


2016 ◽  
Vol 27 (3) ◽  
pp. 375 ◽  
Author(s):  
Kai-Xun Chen ◽  
Po-Fei Chen ◽  
Li-Wei Chen ◽  
Huajian Yao ◽  
Hongjian Fang ◽  
...  

2018 ◽  
Vol 31 (4) ◽  
pp. 208-214
Author(s):  
Zhenghong Song ◽  
◽  
Xiangfang Zeng ◽  
Clifford H. Thurber ◽  
Hebert F. Wang ◽  
...  

2021 ◽  
Vol 189 ◽  
pp. 104327
Author(s):  
Xinhua Chen ◽  
Hongyu Zhang ◽  
Changjiang Zhou ◽  
Jingyin Pang ◽  
Huaixue Xing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document