piping erosion
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 2152 (1) ◽  
pp. 012041
Author(s):  
Hong Fei ◽  
Zifu Hu

Abstract Due to the environmental degradation caused by soil erosion, it is of great significance to establish the relationship model between geological environmental factors and piping erosion. The method to determine the prone area of pipeline corrosion is limited. This paper introduces the mechanism of reinforcement corrosion, points out the non-destructive detection methods of common steel corrosion, and puts forward the measures to prevent and maintain the corrosion of reinforcement from the aspects of design, construction and material selection, so as to prolong the service life of concrete structure. Abrasion, capitation and chemical attack in concrete hydraulic structures can lead to deterioration of spillways, stilling basins, chutes, slabs and transverse joints, concrete blocks under sluices and any irregular surfaces affected by high flow rates. There are numerous coatings on the market that can be used to repair damaged surfaces. However, the basic data provided by the manufacturer is very limited, and if so, it is usually limited to room temperature values. The results show that the data of concrete, corrosion solution and chloride ion are 0.534, 0.673 and 0.384 respectively.


Author(s):  
Scott Davidson ◽  
Paul Baker

This case study presents a levee breach induced by piping erosion under cyclonic conditions in 2019. The levee is a 2.5 m high, 500 m long, mass earth fill embankment; with no cut-off trench, core, or ancillary structures. Located near Port Hedland on the north coast of Western Australia; its purpose is diversionary, to redirect cyclonic surface water away from the nearby Great Northern Highway. The levee was founded directly on Alluvium in 1987; and formed of locally sourced clayey sandy gravel. In 2003, the levee was partially excavated to enable the placement of a buried pipeline through the levee.Following a cyclonic event in 2019, a 27 m length of the levee breached, resulting in significant scour of the foundation and downstream soil. A site visit and investigation were conducted shortly thereafter, where in situ testing and laboratory soil tests on the levee and foundation materials were conducted.Analysis of the site observations and laboratory testing data led to the probable failure mechanism being theorised as having been initiated within the foundation by piping erosion within sand-rich beds of Alluvium. The large quantity of water ponding upstream of the levee then caused a progressive washout and breach of the levee.Thematic collection: This article is part of the Role of water in destabilizing slopes collection available at: https://www.lyellcollection.org/cc/Role-of-water-in-destabilizing-slopes


2021 ◽  
Author(s):  
Liang Chen ◽  
Yu Wan ◽  
Jian-Jian He ◽  
Chun-Mu Luo ◽  
Shu-fa Yan ◽  
...  

Abstract Seepage-induced piping erosion is observed in many geotechnical structures. This paper studies the piping mechanism of gap-graded soils during the whole piping erosion failure process under a supercritical hydraulic gradient. We define the supercritical ratio Ri and study the change in the parameters such as the flow velocity, hydraulic conductivity, and fine particle loss with Ri. Under steady flow, a formula for determining the flow velocity state of the sample with Ri according to the fine particle content and relative density of the sample was proposed; during the piping failure process, the influence of Rimax on the rate at which the flow velocity and hydraulic conductivity of the sample increase as Ri decreases was greater than that of the initial relative density and the initial fine particle content of the sample. Under unsteady flow, a larger initial relative density corresponds to a smaller amplitude of increase in the average value of the peak flow velocity with increasing Ri. Compared with the test under steady flow, the flow velocity under unsteady flow would experience abrupt changes. The relative position of the trend line L of the flow velocity varying with Ri under unsteady flow and the fixed peak water head height point A under steady flow were related to the relative density of the sample.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 346
Author(s):  
Shahab S. Band ◽  
Saeid Janizadeh ◽  
Sunil Saha ◽  
Kaustuv Mukherjee ◽  
Saeid Khosrobeigi Bozchaloei ◽  
...  

Piping erosion is one form of water erosion that leads to significant changes in the landscape and environmental degradation. In the present study, we evaluated piping erosion modeling in the Zarandieh watershed of Markazi province in Iran based on random forest (RF), support vector machine (SVM), and Bayesian generalized linear models (Bayesian GLM) machine learning algorithms. For this goal, due to the importance of various geo-environmental and soil properties in the evolution and creation of piping erosion, 18 variables were considered for modeling the piping erosion susceptibility in the Zarandieh watershed. A total of 152 points of piping erosion were recognized in the study area that were divided into training (70%) and validation (30%) for modeling. The area under curve (AUC) was used to assess the effeciency of the RF, SVM, and Bayesian GLM. Piping erosion susceptibility results indicated that all three RF, SVM, and Bayesian GLM models had high efficiency in the testing step, such as the AUC shown with values of 0.9 for RF, 0.88 for SVM, and 0.87 for Bayesian GLM. Altitude, pH, and bulk density were the variables that had the greatest influence on the piping erosion susceptibility in the Zarandieh watershed. This result indicates that geo-environmental and soil chemical variables are accountable for the expansion of piping erosion in the Zarandieh watershed.


Author(s):  
Adu Sakyi ◽  
Peter Amoako-Yirenkyi ◽  
Isaac Kwame Dontwi

We model and simulate piping erosion phenomena with deposition in a spatially heterogeneous soil mass motivated by seepage flow. The soil is considered to be a porous media with periodic positioning of pores spread around cylindrical structures or microstructures making the heterogeneities periodic in space.The period of the heterogeneities defines a microscopic length scale ϵ of the microscopic problem and this allows the use of periodic homogenization methods.We studied the asymptotic behaviour of the solutions to the micro problem as ϵ ! 0 and obtained a homogenized model or macro problem with explicit formula for effective coefficients. Numerical simulations of the proposed model captures the expected behaviour of soil particle concentration and deposition as observed in piping flow erosion phenomena.


2020 ◽  
Author(s):  
Saeid Janizadeh ◽  
Kourosh Ahmadi ◽  
Sunil Saha ◽  
Kaustuv Mukherjee ◽  
Saeid Khosrobeigi Bozchaloei ◽  
...  

2020 ◽  
Author(s):  
Juan Pablo Aguilar-Lopez ◽  
Manuel Wewer ◽  
Thom Bogaard ◽  
Matthijs Kok

<p>Backward piping erosion (BEP) is a highly complex erosive process which occurs on granular soils when large head differences are exerted. This process represents a significant threat to dams and levees stability and therefore a large part of the design and reliability assessment of these water retaining structures is devoted to this single process. Several authors have achieved great accuracy in predicting the critical head difference that triggers the process but not so much has been studied regarding the time of occurrence and the duration of the erosive process.  In the present study we propose a 2D finite element model for which not only the critical head difference can be predicted but also the development of the erosive process in time. This was achieved by coupling the 2D Darcy partial differential equation with Exner’s 1D sediment transport mass conservation equation. Different laminar sediment transport rate empirical models were tested and used as inputs in the coupled model. To test the performance of the proposed model, the IJkdijk real scale experiment for piping erosion was simulated. The results show that the model is capable of predicting not only the critical head and its progression in time but also specific events of the process such as the instants of start of the erosion and the  complete seepage length development . An important conclusion of the study is that from several transport empirical formulas tested, the model from Yalin which is widely recognized by the sediment transport community performs the best.</p>


2020 ◽  
Author(s):  
Juan Pablo Aguilar-López ◽  
Andres Garcia-Ruiz ◽  
Thom Bogaard ◽  
Miguel Gonzalez-Herraez

<p>Backward piping erosion (BEP) is considered the most dangerous failure mode for levees due to its unpredictable nature. This erosive process happens most of the time underneath the impermeable layers on which levees are commonly founded. This makes it very difficult to detect as conventional geophysical methods are either too expensive or too imprecise for real time monitoring of longitudinal soil made structures such as Dams or levees. Fiber optic based distributed acoustic sensing (DAS) is an innovative technology which allows to retrieve information from an acoustic propagating medium in a spatially dense manner by using a fiber optic cable. The present study aimed to explore the potential of DAS for early detection of BEP  under levees based on the frictional emissions of the sand grains during the erosive process. The tests were performed in the lab under controlled ambient noise conditions. The technology was tested by embedding fiber optic based microphones underneath and outside a laboratory scaled aquifer set up capable of recreating BEP. The results show that indeed the process emits certain characteristic frequencies which may be located between 1200 to 1600 Hz and and that they can easily be captured by the fiber optic cables.</p>


CATENA ◽  
2020 ◽  
Vol 185 ◽  
pp. 104295 ◽  
Author(s):  
María A. Pereyra ◽  
Diego S. Fernández ◽  
Enzo R. Marcial ◽  
María E. Puchulu

Sign in / Sign up

Export Citation Format

Share Document