3D quantitative description of Cenozoic volcanic rocks in Southern Bohai—a case study in BZ34-X area in the southern slope of Huanghekou depression

Author(s):  
Jing Wu* ◽  
Donghong Zhou
2018 ◽  
Vol 22 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Cunhui Fan ◽  
Qirong Qin ◽  
Feng Liang ◽  
Zenghui Fan ◽  
Zhi Li

Fractures in Carboniferous volcanic rocks located at Zhongguai Area (China) highly influence the accumulation and productivity of oil and gas. As such, the study of development periods and genetic mechanisms of tectonic fractures could throw useful information regarding the evaluation and development of that reservoir. Their tectonic origins caused high-angle and oblique shear fractures. The primary orientation of those fractures appears close to EW (270°±10°), NW (300°±15°), NE (45°±15°), and SN (0°±10°). At least four fracture generations can be found in Carboniferous volcanic rocks at Zhongguai Area. Combined with a tectonic evolution, they are based on the segmentation relationship of the fracture fillings, the thermometry measurement of the fracture filling inclusion, and the acoustic emission, as well. Affected by a new horizontal principal stress, the opening and permeability of nearly EW fractures are the best. In this way, a priority in the development of well's patterns should be considered close to EW fractures. The pressure change in the process of exploitation may damage the reservoir permeability of fractured volcano rocks severely. Accordingly, well patterns should be adjusted to dynamic changes of permeability happened during the oilfield development since some differences have been detected in distinct fracture sets. 


2021 ◽  
pp. SP520-2021-89
Author(s):  
Mariano Tenuta ◽  
Paola Donato ◽  
Rocco Dominici ◽  
Rosanna De Rosa

AbstractThe Ofanto river drains volcanic rocks from the Monte Vulture, lacustrine-fluviolacustrine deposits associated with the same volcano and sedimentary deposits of the Southern Apennines and the Bradanic foredeep sequences. Comparing the modal composition of river sands and the outcrop area of different lithologies in the different sub-basins, an over-concentration of the volcaniclastic fraction, mainly represented by loose crystals of clinopyroxene, garnet and amphibole, is shown. This has been related to the preferential erosion of pyroclastic deposits, characterized by high production of sand-sized loose minerals, together with the carbonate lability and the low sand-sized detritus production from claystones and marls. The occurrence of volcaniclastic components upstream of Monte Vulture can be explained with a contribution from the lacustrine-fluviolacustrine deposits outcropping in the upstream sector or from pyroclastic fall deposits of Monte Vulture and/or Campanian volcanoes. This research shows that the volcanic record in the fluvial sands of the Ofanto river comes from weathering and sorting processes of volcaniclastic deposits rather than of the lavas building the main edifice. Therefore, caution must be taken during paleoenvironmental and paleoclimatic reconstructions when relating the type and abundance of the volcanic component in sediments to the weathering stage and evolutionary history of the volcano.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5643959


1999 ◽  
Vol 108 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Asako INANAGA ◽  
Takehiko MIKAMI ◽  
Makiko WATANABE ◽  
Yasunori NAKAYAMA

2020 ◽  
Author(s):  
Helge Behnsen ◽  
Carl Spandler ◽  
Isaac Corral ◽  
Zhaoshan Chang ◽  
Paul H.G.M. Dirks

Abstract The Early Permian Lizzie Creek Volcanic Group of the northern Bowen Basin, NE Queensland, Australia, has compositions that range from basalt through andesite to rhyolite with geochemical signatures (e.g., enrichment in Cs, Rb, Ba, U, Th, and Pb, depletion in Nb and Ta) that are typical of arc lavas. In the Mount Carlton district the Lizzie Creek Volcanic Group is host to high-sulfidation epithermal Cu-Au-Ag mineralization, whereas farther to the south near Collinsville (~50 km from Mount Carlton) these volcanic sequences are barren of magmatic-related mineralization. Here, we assess whether geochemical indicators of magma fertility (e.g., Sr/Y, La/Yb, V/Sc) can be applied to volcanic rocks through study of coeval volcanic sequences from these two locations. The two volcanic suites share similar petrographic and major element geochemical characteristics, and both have undergone appreciable hydrothermal alteration during, or after, emplacement. Nevertheless, the two suites have distinct differences in alteration-immobile trace element (V, Sc, Zr, Ti, REE, Y) concentrations. The unmineralized suite has relatively low V/Sc and La/Yb, particularly in the high SiO2 rocks, which is related to magma evolution dominated by fractionation of clinopyroxene, plagioclase, and magnetite. By contrast, the mineralized suite has relatively high V/Sc but includes high SiO2 rocks with depleted HREE and Y contents, and hence high La/Yb. These trends are interpreted to reflect magma evolution under high magmatic H2O conditions leading to enhanced amphibole crystallization and suppressed plagioclase and magnetite crystallization. These rocks have somewhat elevated Sr/Y compared to the unmineralized suite, but as Sr is likely affected by hydrothermal mobility, Sr/Y is not considered to be a reliable indicator of magmatic conditions. Our data show that geochemical proxies such as V/Sc and La/Yb that are used to assess Cu-Au fertility of porphyry intrusions can also be applied to cogenetic volcanic sequences, provided elemental trends with fractionation can be assessed for a volcanic suite. These geochemical tools may aid regional-scale exploration for Cu-Au mineralization in convergent margin terranes, especially in areas that have undergone limited exhumation or where epithermal and porphyry mineralization may be buried beneath cogenetic volcanic successions.


2018 ◽  
Vol 6 (2) ◽  
pp. T431-T447 ◽  
Author(s):  
Xiaoming Sun ◽  
Siyuan Cao ◽  
Xiao Pan ◽  
Xiangyang Hou ◽  
Hui Gao ◽  
...  

Volcanic reservoirs have been overlooked for hydrocarbon exploration for a long time. Carboniferous volcanic rocks of the Zhongguai paleouplift contain proven reserves of [Formula: see text]. We have investigated the volcanic reservoirs integrating cores, well, and seismic data, and the proposed volcanic reservoir distribution is controlled by the weathering function, fractures, and lithology. The weathering process makes the originally tight igneous rocks become good-quality reservoirs, and fractures play an important role in connecting different types of pores and act as reservoir space. Isolated and ineffective pores become effective ones due to connection among fractures. Only volcanic breccia can be good-quality reservoirs without any weathering function. The nonlinear chaos inversion controlled by weathered layers shows that the good-quality reservoirs are distributed in the top of the weathering crust and the structural high. Furthermore, fluid-detection attributes and background information prove that oil and gas are distributed along the paleostructural high. The objectives of this study were to (1) describe the characteristics of volcanic reservoirs and determine the controlled rules for reservoir distribution, (2) characterize the distribution of reservoirs and hydrocarbon, and (3) propose an effective workflow for hydrocarbon exploration in volcanic rocks combining geologic and geophysical methods.


Sign in / Sign up

Export Citation Format

Share Document