Combine prestack inversion and microseismic to understand hydraulic fracturing performance in gas shale of Sichuan Basin, China

Author(s):  
Long Teng ◽  
Xinchao Yang ◽  
Zhengliang Lin ◽  
Jiubing Cheng
2018 ◽  
Vol 630 ◽  
pp. 349-356 ◽  
Author(s):  
Caineng Zou ◽  
Yunyan Ni ◽  
Jian Li ◽  
Andrew Kondash ◽  
Rachel Coyte ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3451 ◽  
Author(s):  
Zuxun Zhang ◽  
Hongtu Wang ◽  
Bozhi Deng ◽  
Minghui Li ◽  
Dongming Zhang

Hydraulic fracturing is an effective technology for enhancing the extraction of reservoir methane, as proved by field experience and laboratory experiments. However, unlike conventional reservoirs, coal seams had high stress sensitivity and high anisotropy. Therefore, the efficiency of hydraulic fracturing in coal seams needs to be investigated. In this study, hydraulic fracturing was performed at Nantong mine in the southeast Sichuan basin, China. The field investigation indicated that the hydraulic fracturing could significantly enhance the methane extraction rate of boreholes ten times higher than that of normal boreholes in one of the minable coal seams (named #5 coal seam). The performance of hydraulic fracturing in three districts revealed that compared with south flank, the fluid pressure was higher and the injection rate was lower in north flank. The methane extraction rate of south flank was inferior to that of north flank. It indicated hydraulic fracturing had less effect on #5 coal seam in south flank. Moreover, the injection of high-pressure water in coal seams could also drive methane away from boreholes. The methane extraction rate of the test boreholes demonstrated the existence of methane enrichment circles after hydraulic fracturing. It indicated that hydraulic fracturing did act on #5 coal seam in south flank. However, due to the high stress sensitivity of coal seams and the high geo-stress of south flank, the induced artificial fractures in #5 coal seam might close with the decline of the fluid pressure that led to a sharp decline of the methane extraction rate.


Sign in / Sign up

Export Citation Format

Share Document