Orthant-wise limited memory quasi-Newton method for l1-regularized full-waveform inversion

Author(s):  
Mengxue Dai ◽  
Jingbo Chen
Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. R207-R216 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale

We present a method, in realistic-size full-waveform inversion (FWI), to explicitly construct a projected Hessian matrix and its inverse matrix, which we subsequently used to solve FWI with a quasi-Newton method. Newton’s method is practically unfeasible in solving realistic-size FWI problems because of the prohibitive cost (computing time and memory consumption) of calculating the Hessian matrix and the inverse Hessian. Therefore, the Gauss-Newton method and various quasi-Newton methods are proposed to approximate a Hessian matrix. Particularly, current quasi-Newton FWI (QNFWI) commonly uses the limited-memory BFGS (L-BFGS) method, which, however, only implicitly approximates an inverse Hessian. We repose FWI as a sparse optimization problem in a sparse model space, which contains substantially fewer model parameters that are constrained by structures of the model. With respect to fewer parameters in the sparse model, we can avoid the “limited-memory” approximation and are able to explicitly compute and store a projected Hessian matrix that saves the computational time and required memory. We constructed such a projected Hessian matrix by adapting the classic BFGS method to a projected BFGS (P-BFGS) method in the sparse space. Using the projected Hessian matrix and its inverse, we can apply the P-BFGS method to solve FWI with a quasi-Newton method. In QNFWI with P-BFGS because we invert for a sparse model with much fewer parameters, the memory required to compute the projected Hessian is negligible compared to either forward modeling or gradient calculation. QNFWI with P-BFGS converges in fewer iterations than conjugate-gradient based methods and QNFWI with L-BFGS.


2020 ◽  
Author(s):  
Dirk-Philip van Herwaarden ◽  
Christian Boehm ◽  
Michael Afanasiev ◽  
Solvi Thrastarson ◽  
Lion Krischer ◽  
...  

<p>We present an evolutionary full-waveform inversion based on dynamic mini-batch optimization, which naturally exploits redundancies in observed data from different sources and allows the model to evolve along with the amount of available information in the data.</p><p>Quasi-random subsets (mini-batches) of sources are used to approximate the misfit and the gradient of the complete dataset. The size of the mini-batch is dynamically controlled by the desired quality of the approximation of the full gradient. Within each mini-batch, redundancy is minimized by selecting sources with the largest angular differences between their respective gradients, and spatial coverage is maximized by selecting candidate events with Mitchell’s best-candidate algorithm. Information from sources included in a previous mini-batch is incorporated into each gradient calculation through a quasi-Newton approximation of the Hessian, and a consistent misfit measure is achieved through the inclusion of a control group of sources.</p><p>By design, the dynamic mini-batch approach has several main advantages: (1) The use of mini-batches with adaptive sizes minimizes the number of redundant simulations per iteration, thus potentially leading to significant computational savings. (2) Curvature information is accumulated and used during the inversion, using a stochastic quasi-Newton method. (3) Data from new events or different time windows can seamlessly be incorporated during the iterations, thereby enabling an evolutionary mode of full-waveform inversion.</p><p>To illustrate our method, we start an inversion for upper mantle structure beneath the African plate. Starting from a smooth 1-D background model for a dataset recorded in the years 1990 to 1995, we then sequentially add more and more recent data into the inversion and show how the model can evolve as a function of data coverage. The mini-batch sampling approach allows us to incorporate data from several hundred earthquakes without increasing the computational burden, thereby going significantly beyond previous regional-scale full-waveform inversions.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R399-R415 ◽  
Author(s):  
Jizhong Yang ◽  
Yuzhu Liu ◽  
Liangguo Dong

Density is known to be difficult to reconstruct in multiparameter full-waveform inversion (FWI). This difficulty results from the similarity of the diffraction patterns of velocity and density at small scattering angles. In addition, the sensitivities of seismic data with respect to velocity and density have different orders of magnitude which make the inversion ill-conditioned. The inverse Hessian has been shown to mitigate the coupling effects and rescale the magnitudes of different parameters, such that reliable updates for all parameters are available. We have investigated the possibility of simultaneous estimations of velocity and density in acoustic media using the truncated Gauss-Newton method. The model updates are calculated using a matrix-free conjugate gradient solution of the Gauss-Newton normal equation. The gradients of the misfit function with respect to the model parameters and the Hessian-vector products are computed using an improved scattering-integral approach. To give some insights into the trade-off effects between velocity and density, and the imaging resolution in FWI, the sensitivity kernels of both parameters are numerically calculated in homogeneous background models, and their spatial distributions and characteristics are analyzed. The synthetic experiments on a canonical inclusion model and the 2004 BP model confirm that, in cases in which the Gauss-Newton approximate Hessian, especially its off-diagonal blocks, is accurately taken into account, the truncated Gauss-Newton method can effectively mitigate the trade-off effects between velocity and density and provide accelerated convergence rate. Hence, well-resolved velocity and density models are expected.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R299-R311
Author(s):  
Donguk Lee ◽  
Sukjoon Pyun

Full-waveform inversion (FWI) is a powerful tool for imaging underground structures with high resolution; however, this approach commonly suffers from the cycle-skipping issue. Recently, various FWI methods have been suggested to address this problem. Such methods are mainly classified into either data-space manipulation or model-space extension. We developed an alternative FWI method that belongs to the latter class. First, we define the virtual scattering source based on perturbation theory. The virtual scattering source is estimated by minimizing the differences between observed and simulated data with a regularization term penalizing the weighted virtual scattering source. The inverse problem for obtaining the virtual scattering source can be solved by the linear conjugate gradient method. The inverted virtual scattering source is used to update the wavefields; thus, it helps FWI to better approximate the nonlinearity of the inverse scattering problem. As the second step, the virtual scattering source is minimized to invert the velocity model. By assuming that the variation of the reconstructed wavefield is negligible, we can apply an approximated full Newton method to the velocity inversion with reasonable cost comparable to the Gauss-Newton method. From the numerical examples using synthetic data, we confirm that the proposed method performs better and more robust than the simple gradient-based FWI method. In addition, we show that our objective function has fewer local minima, which helps to mitigate the cycle-skipping problem.


2013 ◽  
Vol 35 (2) ◽  
pp. B401-B437 ◽  
Author(s):  
L. Métivier ◽  
R. Brossier ◽  
J. Virieux ◽  
S. Operto

Sign in / Sign up

Export Citation Format

Share Document