Near-surface velocity analysis for single-sensor data: An integrated workflow using surface waves, AI, and structure-regularized inversion

Author(s):  
Taqi Alyousuf ◽  
Daniele Colombo ◽  
Diego Rovetta ◽  
Ernesto Sandoval-Curiel
Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. SA15-SA25 ◽  
Author(s):  
David F. Halliday ◽  
Andrew Curtis ◽  
Peter Vermeer ◽  
Claudio Strobbia ◽  
Anna Glushchenko ◽  
...  

Land seismic data are contaminated by surface waves (or ground roll). These surface waves are a form of source-generated noise and can be strongly scattered by near-surface heterogeneities. The resulting scattered ground roll can be particularly difficult to separate from the desired reflection data, especially when this scattered ground roll propagates in the crossline direction. We have used seismic interferometry to estimate scattered surface waves, recorded during an exploration seismic survey, between pairs of receiver locations. Where sources and receivers coincide, these interreceiver surface-wave estimates were adaptively subtracted from the data. This predictive-subtraction process can successfully attenuate scattered surface waves while preserving the valuable reflected arrivals, forming a new method of scattered ground-roll attenuation. We refer to this as interferometric ground-roll removal.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. U1-U8 ◽  
Author(s):  
Benoit de Cacqueray ◽  
Philippe Roux ◽  
Michel Campillo ◽  
Stefan Catheline

We tested a small-scale experiment that is dedicated to the study of the wave separation algorithm and to the velocity variations monitoring problem itself. It handles the case in which velocity variations at depth are hidden by near-surface velocity fluctuations. Using an acquisition system that combines an array of sources and an array of receivers, coupled with controlled velocity variations, we tested the ability of beam-forming techniques to track velocity variations separately for body waves and surface waves. After wave separation through double beam forming, the arrival time variations of the different waves were measured through the phase difference between the extracted wavelets. Finally, a method was tested to estimate near-surface velocity variations using surface waves or shallow reflection and compute a correction to isolate target velocity variations at depth.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Lanlan Yan ◽  
Larry R. Lines

Seismic imaging of complex structures from the western Canadian Foothills can be achieved by applying the closely coupled processes of velocity analysis and depth migration. For the purposes of defining these structures in the Shaw Basing area of western Alberta, we performed a series of tests on both synthetic and real data to find optimum imaging procedures for handling large topographic relief, near‐surface velocity variations, and the complex structural geology of steeply dipping formations. To better understand the seismic processing problems, we constructed a typical foothills geological model that included thrust faults and duplex structures, computed the model responses, and then compared the performance of different migration algorithms, including the explicit finite difference (f-x) and Kirchhoff integral methods. When the correct velocity was used in the migration tests, the f-x method was the most effective in migration from topography. In cases where the velocity model was not assumed known, we determined a macrovelocity model by performing migration/velocity analysis by using smiles and frowns in common image gathers and by using depth‐focusing analysis. In applying depth imaging to the seismic survey from the Shaw Basing area, we found that imaging problems were caused partly by near‐surface velocity problems, which were not anticipated in the modeling study. Several comparisons of different migration approaches for these data indicated that prestack depth migration from topography provided the best imaging results when near‐surface velocity information was incorporated. Through iterative and interpretive migration/velocity analysis, we built a macrovelocity model for the final prestack depth migration.


Geophysics ◽  
2003 ◽  
Vol 68 (4) ◽  
pp. 1331-1339 ◽  
Author(s):  
Tariq Alkhalifah

Prestack migration velocity analysis in the time domain reduces the velocity‐depth ambiguity usually hampering the performance of prestack depth‐migration velocity analysis. In prestack τ migration velocity analysis, we keep the interval velocity model and the output images in vertical time. This allows us to avoid placing reflectors at erroneous depths during the velocity analysis process and, thus, avoid slowing down its convergence to the true velocity model. Using a 1D velocity update scheme, the prestack τ migration velocity analysis performed well on synthetic data from a model with a complex near‐surface velocity. Accurate velocity information and images were obtained using this time‐domain method. Problems occurred only in resolving a thin layer where the low resolution and fold of the synthetic data made it practically impossible to estimate velocity accurately in this layer. This 1D approach also provided us reasonable results for synthetic data from the Marmousi model. Despite the complexity of this model, the τ domain implementation of the prestack migration velocity analysis converged to a generally reasonable result, which includes properly imaging the elusive top‐of‐the‐reservoir layer.


2020 ◽  
Vol 39 (6) ◽  
pp. 422-429
Author(s):  
Andrey Bakulin ◽  
Ali Aldawood ◽  
Ilya Silvestrov ◽  
Emad Hemyari ◽  
Flavio Poletto

Advanced geophysical sensing while drilling is being driven by trends to automate and optimize drilling and the desire to better characterize complex near surface and overburden in desert environments. We introduce the DrillCAM system, which combines a set of geophysical techniques from seismic while drilling (SWD), drill-string vibration health, estimation of formation properties at the bit, and imaging ahead of and around the bit. We present data acquisition, processing, and initial application results from the first field trial on an onshore well in a desert environment. In this study, we focus on SWD applications. For the first time, wireless geophones installed around a rig were used to acquire continuous data while drilling. We demonstrate the feasibility of such a system to provide flexible acquisition geometries that are easily expandable with increasing bit depth without interference from drilling operations. Using a top-drive sensor as a pilot, we transform the drill-bit noise into meaningful and reliable seismic signals. The data were used to retrieve a check shot while drilling, make kinematic look-ahead predictions, and obtain a vertical seismic profiling corridor stack matching surface seismic. Robust near-offset check-shot signals were received from roller-cone and polycrystalline diamond compact (PDC) bits above 7200 ft after limited preprocessing of challenging single-sensor data with supergrouping. Detecting signals from deeper sections drilled with PDC bits may require more advanced processing by using an entire 2D spread of wireless geophones and downhole pilots. The real-time capabilities of the system make the data available for continuous data processing and interpretation that will facilitate drilling automation and improve real-time decision making.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. Q29-Q42 ◽  
Author(s):  
Ionelia Panea ◽  
Guy Drijkoningen

Coherent noise generated by surface waves or ground roll within a heterogeneous near surface is a major problem in land seismic data. Array forming based on single-sensor recordings might reduce such noise more robustly than conventional hardwired arrays. We use the minimum-variance distortionless-response (MVDR) beamformer to remove (aliased) surface-wave energy from single-sensor data. This beamformer is data adaptive and robust when the presumed and actual desired signals are mismatched. We compute the intertrace covariance for the desired signal, and then for the total signal (desired [Formula: see text]) to obtain optimal weights. We use the raw data of only one array for the covariance of the total signal, and the wavenumber-filtered version of a full seismic single-sensor record for the covariance of the desired signal. In the determination of optimal weights, a parameter that controls the robustness of the beamformer against an arbitrary desired signal mismatch has to be chosen so that the results are optimal. This is similar to stabilization in deconvolution problems. This parameter needs to be smaller than the largest eigenvalue provided by the singular value decomposition of the presumed desired signal covariance. We compare results of MVDR beamforming with standard array forming on single-sensor synthetic and field seismic data. We apply 2D and 3D beamforming and show prestack and poststack results. MVDR beamformers are superior to conventional hardwired arrays for all examples.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V283-V296 ◽  
Author(s):  
Andrey Bakulin ◽  
Ilya Silvestrov ◽  
Maxim Dmitriev ◽  
Dmitry Neklyudov ◽  
Maxim Protasov ◽  
...  

We have developed nonlinear beamforming (NLBF), a method for enhancing modern 3D prestack seismic data acquired onshore with small field arrays or single sensors in which weak reflected signals are buried beneath the strong scattered noise induced by a complex near surface. The method is based on the ideas of multidimensional stacking techniques, such as the common-reflection-surface stack and multifocusing, but it is designed specifically to improve the prestack signal-to-noise ratio of modern 3D land seismic data. Essentially, NLBF searches for coherent local events in the prestack data and then performs beamforming along the estimated surfaces. Comparing different gathers that can be extracted from modern 3D data acquired with orthogonal acquisition geometries, we determine that the cross-spread domain (CSD) is typically the most convenient and efficient. Conventional noise removal applied to modern data from small arrays or single sensors does not adequately reveal the underlying reflection signal. Instead, NLBF supplements these conventional tools and performs final aggregation of weak and still broken reflection signals, where the strength is controlled by the summation aperture. We have developed the details of the NLBF algorithm in CSD and determined the capabilities of the method on real 3D land data with the focus on enhancing reflections and early arrivals. We expect NLBF to help streamline seismic processing of modern high-channel-count and single-sensor data, leading to improved images as well as better prestack data for estimation of reservoir properties.


Sign in / Sign up

Export Citation Format

Share Document