Nonlinear beamforming for enhancement of 3D prestack land seismic data

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V283-V296 ◽  
Author(s):  
Andrey Bakulin ◽  
Ilya Silvestrov ◽  
Maxim Dmitriev ◽  
Dmitry Neklyudov ◽  
Maxim Protasov ◽  
...  

We have developed nonlinear beamforming (NLBF), a method for enhancing modern 3D prestack seismic data acquired onshore with small field arrays or single sensors in which weak reflected signals are buried beneath the strong scattered noise induced by a complex near surface. The method is based on the ideas of multidimensional stacking techniques, such as the common-reflection-surface stack and multifocusing, but it is designed specifically to improve the prestack signal-to-noise ratio of modern 3D land seismic data. Essentially, NLBF searches for coherent local events in the prestack data and then performs beamforming along the estimated surfaces. Comparing different gathers that can be extracted from modern 3D data acquired with orthogonal acquisition geometries, we determine that the cross-spread domain (CSD) is typically the most convenient and efficient. Conventional noise removal applied to modern data from small arrays or single sensors does not adequately reveal the underlying reflection signal. Instead, NLBF supplements these conventional tools and performs final aggregation of weak and still broken reflection signals, where the strength is controlled by the summation aperture. We have developed the details of the NLBF algorithm in CSD and determined the capabilities of the method on real 3D land data with the focus on enhancing reflections and early arrivals. We expect NLBF to help streamline seismic processing of modern high-channel-count and single-sensor data, leading to improved images as well as better prestack data for estimation of reservoir properties.

2019 ◽  
pp. 2664-2671
Author(s):  
Ahmed Hussein Ali ◽  
Ali M. Al-Rahim

Tau-P linear noise attenuation filter (TPLNA) was applied on the 3D seismic data of Al-Samawah area south west of Iraq with the aim of attenuating linear noise. TPLNA transforms the data from time domain to tau-p domain in order to increase signal to noise ratio. Applying TPLNA produced very good results considering the 3D data that usually have a large amount of linear noise from different sources and in different azimuths and directions. This processing is very important in later interpretation due to the fact that the signal was covered by different kinds of noise in which the linear noise take a large part.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. SA15-SA25 ◽  
Author(s):  
David F. Halliday ◽  
Andrew Curtis ◽  
Peter Vermeer ◽  
Claudio Strobbia ◽  
Anna Glushchenko ◽  
...  

Land seismic data are contaminated by surface waves (or ground roll). These surface waves are a form of source-generated noise and can be strongly scattered by near-surface heterogeneities. The resulting scattered ground roll can be particularly difficult to separate from the desired reflection data, especially when this scattered ground roll propagates in the crossline direction. We have used seismic interferometry to estimate scattered surface waves, recorded during an exploration seismic survey, between pairs of receiver locations. Where sources and receivers coincide, these interreceiver surface-wave estimates were adaptively subtracted from the data. This predictive-subtraction process can successfully attenuate scattered surface waves while preserving the valuable reflected arrivals, forming a new method of scattered ground-roll attenuation. We refer to this as interferometric ground-roll removal.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. Q29-Q42 ◽  
Author(s):  
Ionelia Panea ◽  
Guy Drijkoningen

Coherent noise generated by surface waves or ground roll within a heterogeneous near surface is a major problem in land seismic data. Array forming based on single-sensor recordings might reduce such noise more robustly than conventional hardwired arrays. We use the minimum-variance distortionless-response (MVDR) beamformer to remove (aliased) surface-wave energy from single-sensor data. This beamformer is data adaptive and robust when the presumed and actual desired signals are mismatched. We compute the intertrace covariance for the desired signal, and then for the total signal (desired [Formula: see text]) to obtain optimal weights. We use the raw data of only one array for the covariance of the total signal, and the wavenumber-filtered version of a full seismic single-sensor record for the covariance of the desired signal. In the determination of optimal weights, a parameter that controls the robustness of the beamformer against an arbitrary desired signal mismatch has to be chosen so that the results are optimal. This is similar to stabilization in deconvolution problems. This parameter needs to be smaller than the largest eigenvalue provided by the singular value decomposition of the presumed desired signal covariance. We compare results of MVDR beamforming with standard array forming on single-sensor synthetic and field seismic data. We apply 2D and 3D beamforming and show prestack and poststack results. MVDR beamformers are superior to conventional hardwired arrays for all examples.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. V233-V243
Author(s):  
Dingyue Chang ◽  
Cai Zhang ◽  
Tianyue Hu ◽  
Dan Wang

Moveout correction for irregular topography has been a longstanding challenge in processing seismic exploration data. Irregular topography usually results in large moveout among traces, a low signal-to-noise ratio (S/N), and difficulty in modeling near-surface velocities. Conventional normal moveout (NMO) corrections and elevation static methods are imprecise and tend to introduce significant errors for large offsets. Over the past two decades, several multiparameter time corrections and stacking techniques to reduce noise and improve resolution have been proposed in place of the classic NMO and common-midpoint stack. These include the common-reflection-surface (CRS), common-offset CRS, nonhyperbolic CRS, implicit CRS, multifocusing (MF), irregular surface MF (IS-MF), spherical MF (SMF), and common-offset MF methods. Various CRS-type operators that consider the top-surface topography have been proposed. For MF-type operators, only IS-MF can be applied directly to the irregular topography with no elevation statics required. In this study, we have developed a new MF formulation, modifying the SMF method to consider nonzero elevations of sources and receivers and we corrected moveout of nonplanar data directly without prior elevation static corrections. The proposed extension combines the sensitivity to spherical reflectors of SMF with the applicability of the IS-MF method to irregular topography. We investigated the behavior of the new operator using a physical model data set and compared the results with those from the conventional IS-MF method. The results revealed that the new operator is more robust over a wide range of source and receiver elevations and has advantages on strongly curved interfaces. We also confirmed the potential of the proposed approach by comparing stacking results for a real-land data set with a low S/N.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. A19-A24 ◽  
Author(s):  
Aleksander S. Serdyukov ◽  
Aleksander V. Yablokov ◽  
Anton A. Duchkov ◽  
Anton A. Azarov ◽  
Valery D. Baranov

We have addressed the problem of estimating surface-wave phase velocities through the spectral processing of seismic data. This is the key step of the well-known near-surface seismic exploration method, called multichannel analysis of surface waves. To increase the accuracy and ensure the unambiguity of the selection of dispersion curves, we have developed a new version of the frequency-wavenumber ([Formula: see text]-[Formula: see text]) transform based on the S-transform. We obtain the frequency-time representation of seismic data. We analyze the obtained S-transform frequency-time representation in a slant-stacking manner but use a spatial Fourier transform instead of amplitude stacking. Finally, we build the [Formula: see text]-[Formula: see text] image by analyzing the spatial spectra for different steering values of the surface-wave group velocities. The time localization of the surface-wave packet at each frequency increases the signal-to-noise ratio because of an exclusion of noise in other time steps (which does not fall in the effective width of the corresponding wavelet). The new [Formula: see text]-[Formula: see text] transform, i.e., the slant [Formula: see text]-[Formula: see text] (SFK) transform, renders a better spectral analysis than the conventional [Formula: see text]-[Formula: see text] transform and yields more accurate phase-velocity estimation, which is critical for the surface-wave analysis. The advantages of the SFK transform have been confirmed by synthetic- and field-data processing.


2014 ◽  
Vol 2 (1) ◽  
pp. SA93-SA97 ◽  
Author(s):  
Saleh Al-Dossary ◽  
Yuchun Eugene Wang ◽  
Mark McFarlane

The new seismic disorder attribute quantitatively describes the degree of randomness embedded in 3D poststack seismic data. We compute seismic disorder using a filter operation that removes simple structures including constant values, constant slopes, and steps in axial directions. We define the power of the filtered data as the seismic disorder attribute, which approximately represents data randomness. Seismic data irregularities are caused by a variety of reasons, including random reflection, diffraction, near-surface variations, and acquisition noise. Consequently, the spatial distribution of the seismic disorder attribute may help hydrocarbon exploration in several ways, including identifying geologic features such as fracture zones, gas chimneys, and terminated unconformities; indicating the signal-to-noise ratio to assess data quality; and providing a confidence index for reservoir simulation and engineering projects. We present three case studies and a comparison to other noise-estimation methods.


Geophysics ◽  
1989 ◽  
Vol 54 (11) ◽  
pp. 1384-1396
Author(s):  
Howard Renick ◽  
R. D. Gunn

The Triangle Ranch Headquarters Canyon Reef field is long and narrow and in an area where near‐surface evaporites and associated collapse features degrade seismic data quality and interpretational reliability. Below this disturbed section, the structure of rocks is similar to the deeper Canyon Reef structure. The shallow structure exhibits very gentle relief and can be mapped by drilling shallow holes on a broad grid. The shallow structural interpretation provides a valuable reference datum for mapping, as well as providing a basis for planning a seismic program. By computing an isopach between the variable seismic datum and the Canyon Reef reflection and subtracting the isopach map from the datum map, we map Canyon Reef structure. The datum map is extrapolated from the shallow core holes. In the area, near‐surface complexities produce seismic noise and severe static variations. The crux of the exploration problem is to balance seismic signal‐to‐noise ratio and geologic resolution. Adequate geologic resolution is impossible without understanding the exploration target. As we understood the target better, we modified our seismic acquisition parameters. Studying examples of data with high signal‐to‐noise ratio and poor resolution and examples of better defined structure on apparently noisier data led us to design an acquisition program for resolution and to reduce noise with arithmetic processes that do not reduce structural resolution. Combining acquisition and processing parameters for optimum structural resolution with the isopach mapping method has improved wildcat success from about 1 in 20 to better than 1 in 2. It has also enabled an 80 percent development drilling success ratio as opposed to slightly over 50 percent in all previous drilling.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. V283-V292 ◽  
Author(s):  
Chao Zhang ◽  
Mirko van der Baan

Microseismic and seismic data with a low signal-to-noise ratio affect the accuracy and reliability of processing results and their subsequent interpretation. Thus, denoising is of great importance. We have developed an effective denoising framework for surface (micro)-seismic data using block matching. The novel idea of the proposed framework is to enhance coherent features by grouping similar 2D data blocks into 3D data arrays. The high similarities in the 3D data arrays benefit any filtering strategy suitable for multidimensional noise suppression. We test the performance of this framework on synthetic and field data with different noise levels. The results demonstrate that the block-matching-based framework achieves state-of-the-art denoising performance in terms of incoherent-noise attenuation and signal preservation.


Sign in / Sign up

Export Citation Format

Share Document