Near-surface velocity modeling using correlation-based first arrival traveltime tomography

Author(s):  
Dong Cui ◽  
Ying Hu ◽  
Yan Zhang ◽  
Cai Zhang ◽  
Yujie Zhang
Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. U31-U43
Author(s):  
Yihao Wang ◽  
Jie Zhang

In near-surface velocity structure estimation, first-arrival traveltime tomography tends to produce a smooth velocity model. If the shallow structures include a weathering layer over high-velocity bedrock, first-arrival traveltime tomography may fail to recover the sharp interface. However, with the same traveltime data, refraction traveltime migration proves to be an effective tool for accurately mapping the refractor. The approach downward continues the refraction traveltime curves and produces an image (position) of the refractor for a given overburden velocity model. We first assess the validity of the refraction traveltime migration method and analyze its uncertainties with a simple model. We then develop a multilayer refraction traveltime migration method and apply the migration image to constrain traveltime tomographic inversion by imposing discontinuities at the refraction interfaces in model regularization. In each subsequent iteration, the shape of the migrated refractors and the velocity model are simultaneously updated. The synthetic tests indicate that the joint inversion method performs better than the conventional first-arrival traveltime tomography method with Tikhonov regularization and the delay-time method in reconstructing near-surface models with high-velocity contrasts. In application to field data, this method produces a more accurately resolved velocity model, which improves the quality of common midpoint stacking by making long-wavelength static corrections.


Geophysics ◽  
2012 ◽  
Vol 77 (1) ◽  
pp. R33-R43 ◽  
Author(s):  
Brendan R. Smithyman ◽  
Ronald M. Clowes

Waveform tomography, a combination of traveltime tomography (or inversion) and waveform inversion, is applied to vibroseis first-arrival data to generate an interpretable model of P-wave velocity for a site in the Nechako Basin, south-central British Columbia, Canada. We use constrained 3D traveltime inversion followed by 2D full-waveform inversion to process long-offset (14.4 km) first-arrival refraction waveforms, resulting in a velocity model of significantly higher detail than a conventional refraction-statics model generated for a processing workflow. The crooked-line acquisition of the data set makes 2D full-waveform inversion difficult. Thus, a procedure that improves the tractability of waveform tomography processing of vibroseis data recorded on crooked roads is developed to generate a near-surface ([Formula: see text]) velocity model for the study area. The data waveforms are first static corrected using a time shift determined by 3D raytracing, which accounts for the crossline offsets produced by the crooked-line acquisition. The velocity model generated from waveform tomography exhibits substantial improvement when compared with a conventional refraction-statics model. It also shows improved resolution of sharp discontinuities and low-velocity regions when compared to the model from traveltime tomography alone, especially in regions where the geometry errors are moderate. Interpretation of the near-surface velocity model indicates possible subbasins in the Nechako Basin and delineates the Eocene volcanic rocks of the study area. This approach limits the ability of the full-waveform inversion to fit some propagation modes; however, the tractability of the inversion in the near-surface region is improved. This new development is especially useful in studies that do not warrant 3D seismic acquisition and processing.


Geophysics ◽  
2020 ◽  
pp. 1-57
Author(s):  
Daniele Colombo ◽  
Ernesto Sandoval ◽  
Diego Rovetta ◽  
Apostolos Kontakis

Land seismic velocity modeling is a difficult task largely related to the description of the near surface complexities. Full waveform inversion is the method of choice for achieving high-resolution velocity mapping but its application to land seismic data faces difficulties related to complex physics, unknown and spatially varying source signatures, and low signal-to-noise ratio in the data. Large parameter variations occur in the near surface at various scales causing severe kinematic and dynamic distortions of the recorded wavefield. Some of the parameters can be incorporated in the inversion model while others, due to sub-resolution dimensions or unmodeled physics, need to be corrected through data preconditioning; a topic not well described for land data full waveform inversion applications. We have developed novel algorithms and workflows for surface-consistent data preconditioning utilizing the transmitted portion of the wavefield, signal-to-noise enhancement by generation of CMP-based virtual super shot gathers, and robust 1.5D Laplace-Fourier full waveform inversion. Our surface-consistent scheme solves residual kinematic corrections and amplitude anomalies via scalar compensation or deconvolution of the near surface response. Signal-to-noise enhancement is obtained through the statistical evaluation of volumetric prestack responses at the CMP position, or virtual super (shot) gathers. These are inverted via a novel 1.5D acoustic Laplace-Fourier full waveform inversion scheme using the Helmholtz wave equation and Hankel domain forward modeling. Inversion is performed with nonlinear conjugate gradients. The method is applied to a complex structure-controlled wadi area exhibiting faults, dissolution, collapse, and subsidence where the high resolution FWI velocity modeling helps clarifying the geological interpretation. The developed algorithms and automated workflows provide an effective solution for massive full waveform inversion of land seismic data that can be embedded in typical near surface velocity analysis procedures.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCB1-WCB10 ◽  
Author(s):  
Cédric Taillandier ◽  
Mark Noble ◽  
Hervé Chauris ◽  
Henri Calandra

Classical algorithms used for traveltime tomography are not necessarily well suited for handling very large seismic data sets or for taking advantage of current supercomputers. The classical approach of first-arrival traveltime tomography was revisited with the proposal of a simple gradient-based approach that avoids ray tracing and estimation of the Fréchet derivative matrix. The key point becomes the derivation of the gradient of the misfit function obtained by the adjoint-state technique. The adjoint-state method is very attractive from a numerical point of view because the associated cost is equivalent to the solution of the forward-modeling problem, whatever the size of the input data and the number of unknown velocity parameters. An application on a 2D synthetic data set demonstrated the ability of the algorithm to image near-surface velocities with strong vertical and lateral variations and revealed the potential of the method.


2016 ◽  
Vol 35 (11) ◽  
pp. 946-951 ◽  
Author(s):  
Florian Duret ◽  
Frederique Bertin ◽  
Katia Garceran ◽  
Raphael Sternfels ◽  
Thomas Bardainne ◽  
...  

Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. U109-U119
Author(s):  
Pengyu Yuan ◽  
Shirui Wang ◽  
Wenyi Hu ◽  
Xuqing Wu ◽  
Jiefu Chen ◽  
...  

A deep-learning-based workflow is proposed in this paper to solve the first-arrival picking problem for near-surface velocity model building. Traditional methods, such as the short-term average/long-term average method, perform poorly when the signal-to-noise ratio is low or near-surface geologic structures are complex. This challenging task is formulated as a segmentation problem accompanied by a novel postprocessing approach to identify pickings along the segmentation boundary. The workflow includes three parts: a deep U-net for segmentation, a recurrent neural network (RNN) for picking, and a weight adaptation approach to be generalized for new data sets. In particular, we have evaluated the importance of selecting a proper loss function for training the network. Instead of taking an end-to-end approach to solve the picking problem, we emphasize the performance gain obtained by using an RNN to optimize the picking. Finally, we adopt a simple transfer learning scheme and test its robustness via a weight adaptation approach to maintain the picking performance on new data sets. Our tests on synthetic data sets reveal the advantage of our workflow compared with existing deep-learning methods that focus only on segmentation performance. Our tests on field data sets illustrate that a good postprocessing picking step is essential for correcting the segmentation errors and that the overall workflow is efficient in minimizing human interventions for the first-arrival picking task.


Sign in / Sign up

Export Citation Format

Share Document