Detecting microseismic events in downhole distributed acoustic sensing data using convolutional neural networks

Author(s):  
Gary Binder ◽  
Dwaipayan Chakraborty
Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. KS149-KS160 ◽  
Author(s):  
Anna L. Stork ◽  
Alan F. Baird ◽  
Steve A. Horne ◽  
Garth Naldrett ◽  
Sacha Lapins ◽  
...  

This study presents the first demonstration of the transferability of a convolutional neural network (CNN) trained to detect microseismic events in one fiber-optic distributed acoustic sensing (DAS) data set to other data sets. DAS increasingly is being used for microseismic monitoring in industrial settings, and the dense spatial and temporal sampling provided by these systems produces large data volumes (approximately 650 GB/day for a 2 km long cable sampling at 2000 Hz with a spatial sampling of 1 m), requiring new processing techniques for near-real-time microseismic analysis. We have trained the CNN known as YOLOv3, an object detection algorithm, to detect microseismic events using synthetically generated waveforms with real noise superimposed. The performance of the CNN network is compared to the number of events detected using filtering and amplitude threshold (short-term average/long-term average) detection techniques. In the data set from which the real noise is taken, the network is able to detect >80% of the events identified by manual inspection and 14% more than detected by standard frequency-wavenumber filtering techniques. The false detection rate is approximately 2% or one event every 20 s. In other data sets, with monitoring geometries and conditions previously unseen by the network, >50% of events identified by manual inspection are detected by the CNN.


2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


Sign in / Sign up

Export Citation Format

Share Document