scholarly journals Near-surface S-wave velocity estimation using ambient noise from fiber-optic acquisition

Author(s):  
Zhen-dong Zhang ◽  
Mamdoh Alajami ◽  
Tariq Alkhalifah
2015 ◽  
Vol 26 (2-2) ◽  
pp. 205 ◽  
Author(s):  
Chun-Hsiang Kuo ◽  
Kuo-Liang Wen ◽  
Che-Min Lin ◽  
Strong Wen ◽  
Jyun-Yan Huang

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. EN99-EN108 ◽  
Author(s):  
Zongbo Xu ◽  
T. Dylan Mikesell ◽  
Jianghai Xia ◽  
Feng Cheng

Passive-source seismic-noise-based surface-wave methods are now routinely used to investigate the near-surface geology in urban environments. These methods estimate the S-wave velocity of the near surface, and two methods that use linear recording arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These two methods process noise data differently and thus can yield different estimates of the surface-wave dispersion, the data used to estimate the S-wave velocity. We have systematically compared these two methods using synthetic data with different noise source distributions. We arrange sensors in a linear survey grid, which is conveniently used in urban investigations (e.g., along roads). We find that both methods fail to correctly determine the low-frequency dispersion characteristics when outline noise sources become stronger than inline noise sources. We also identify an artifact in the ReMi method and theoretically explain the origin of this artifact. We determine that SI combined with array-based analysis of surface waves is the more accurate method to estimate surface-wave phase velocities because SI separates surface waves propagating in different directions. Finally, we find a solution to eliminate the ReMi artifact that involves the combination of SI and the [Formula: see text]-[Formula: see text] transform, the array processing method that underlies the ReMi method.


2018 ◽  
Author(s):  
Koichi Hayashi ◽  
Chisato Konishi ◽  
Haruhiko Suzuki ◽  
Ying Liu ◽  
Michitaka Tahara ◽  
...  

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. U49-U59 ◽  
Author(s):  
Laura Valentina Socco ◽  
Cesare Comina ◽  
Farbod Khosro Anjom

In some areas, the estimation of static corrections for land seismic data is a critical step of the processing workflow. It often requires the execution of additional surveys and data analyses. Surface waves (SWs) in seismic records can be processed to extract local dispersion curves (DCs) that can be used to estimate near-surface S-wave velocity models. Here we focus on the direct estimation of time-average S-wave velocity models from SW DCs without the need to invert the data. Time-average velocity directly provides the value of one-way time, given a datum plan depth. The method requires the knowledge of one 1D S-wave velocity model along the seismic line, together with the relevant DC, to estimate a relationship between SW wavelength and investigation depth on the time-average velocity model. This wavelength/depth relationship is then used to estimate all the other time-average S-wave velocity models along the line directly from the DCs by means of a data transformation. This approach removes the need for extensive data inversion and provides a simple method suitable for industrial workflows. We tested the method on synthetic and field data and found that it is possible to retrieve the time-average velocity models with uncertainties less than 10% in sites with laterally varying velocities. The error on one-way times at various depths of the datum plan retrieved by the time-average velocity models is mostly less than 5 ms for synthetic and field data.


2014 ◽  
Vol 96 ◽  
pp. 353-360
Author(s):  
Ya-Chuan Lai ◽  
Bor-Shouh Huang ◽  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Ruey-Der Hwang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document