A comprehensive comparison between the refraction microtremor and seismic interferometry methods for phase-velocity estimation

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. EN99-EN108 ◽  
Author(s):  
Zongbo Xu ◽  
T. Dylan Mikesell ◽  
Jianghai Xia ◽  
Feng Cheng

Passive-source seismic-noise-based surface-wave methods are now routinely used to investigate the near-surface geology in urban environments. These methods estimate the S-wave velocity of the near surface, and two methods that use linear recording arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These two methods process noise data differently and thus can yield different estimates of the surface-wave dispersion, the data used to estimate the S-wave velocity. We have systematically compared these two methods using synthetic data with different noise source distributions. We arrange sensors in a linear survey grid, which is conveniently used in urban investigations (e.g., along roads). We find that both methods fail to correctly determine the low-frequency dispersion characteristics when outline noise sources become stronger than inline noise sources. We also identify an artifact in the ReMi method and theoretically explain the origin of this artifact. We determine that SI combined with array-based analysis of surface waves is the more accurate method to estimate surface-wave phase velocities because SI separates surface waves propagating in different directions. Finally, we find a solution to eliminate the ReMi artifact that involves the combination of SI and the [Formula: see text]-[Formula: see text] transform, the array processing method that underlies the ReMi method.

2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


1962 ◽  
Vol 52 (2) ◽  
pp. 359-388
Author(s):  
Eysteinn Tryggvason

ABSTRACT A number of Icelandic records of earthquakes originating in the Mid-Atlantic Seismic Belt between 52° and 70° N. lat. have been investigated. The surface waves on these records are chiefly in the period interval 3–10 sec, and are first mode Love-waves and Rayleigh-waves. The surface wave dispersion can be explained by a three-layered crustal structure as follows. A surface layer of S-wave velocity about 2.7 km/sec covering the whole region studied, a second layer of S-wave velocity about 3.6 km/sec covering Iceland and extending several hundred kilometers off the coasts and a third layer of S-wave velocity about 4.3 km/sec and P-wave velocity about 7.4 km/sec underlying the whole region. The thickness of the surface layer appears to be about 4 km on the Mid-Atlantic Ridge south of Iceland and in western Iceland, 3 km in central Iceland and 7 km northwest of Iceland. The second layer is apparently of similar thickness than the surface layer, while the third layer is thick; and the surface wave dispersion does not indicate any layer of higher wave velocity. This 7.4-layer is supposed to belong to the mantle, although its wave velocity is significantly lower than usually found in the upper mantle


2021 ◽  
Vol 11 (15) ◽  
pp. 6712
Author(s):  
Chao Zhang ◽  
Ting Lei ◽  
Yi Wang

Surface-wave dispersion and the Z/H ratio are important parameters used to resolve the Earth’s structure, especially for S-wave velocity. Several previous studies have explored using joint inversion of these two datasets. However, all of these studies used a 1-D depth-sensitivity kernel, which lacks precision when the structure is laterally heterogeneous. Adjoint tomography (i.e., full-waveform inversion) is a state-of-the-art imaging method with a high resolution. It can obtain better-resolved lithospheric structures beyond the resolving ability of traditional ray-based travel-time tomography. In this study, we present a systematic investigation of the 2D sensitivities of the surface wave phase and Z/H ratio using the adjoint-state method. The forward-modeling experiments indicated that the 2D phase and Z/H ratio had different sensitivities to the S-wave velocity. Thus, a full-waveform joint-inversion scheme of surface waves with phases and a Z/H ratio was proposed to take advantage of their complementary sensitivities to the Earth’s structure. Both applications to synthetic data sets in large- and small-scale inversions demonstrated the advantage of the joint inversion over the individual inversions, allowing for the creation of a more unified S-wave velocity model. The proposed joint-inversion scheme offers a computationally efficient and inexpensive alternative to imaging fine-scale shallow structures beneath a 2D seismic array.


2016 ◽  
Vol 4 (4) ◽  
pp. SQ59-SQ69 ◽  
Author(s):  
Mitchell Craig ◽  
Koichi Hayashi

Seismic surface wave methods are effective tools for estimating S-wave velocity in urban areas for near-surface site characterization and geologic hazard assessment. A surface wave survey can provide quantitative site-specific measurement of physical properties needed for the design of earthquake-resistant structures. We successfully used a combined active and passive seismic surface wave method to estimate the S-wave velocity in the upper 30 m at sites with a range of geologic conditions. At five of the six sites, multichannel analysis of surface waves (MASW) and microtremor array method (MAM) methods were used. The MAM method could not be used at one site due to insufficient ambient noise. Data from the active method (MASW) contained higher frequencies that contributed to higher resolution of the near-surface zone, whereas passive data (MAM) contained lower frequencies that provided deeper penetration. Phase velocities from the two methods were in good agreement in the frequency range where they overlapped. Surface wave dispersion curves from the two methods were used to prepare an initial velocity model, and a nonlinear inversion was performed to obtain an improved velocity-depth profile. The use of a multimethod data set provided greater confidence in velocity measurements. The six sites of this study may be classified as belonging to two main groups based on S-wave velocities and geologic materials. Two sites are located in the East Bay Hills on Mesozoic bedrock, and four sites are located on Holocene sedimentary units. The highest [Formula: see text] was [Formula: see text] (class C), at a site with fractured and weathered bedrock exposed in a geotechnical trench at 1–2 m depth. The four sites on Holocene sedimentary units have [Formula: see text] values ranging from 207 to [Formula: see text] (class D).


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R147-R161 ◽  
Author(s):  
Zhaolun Liu ◽  
Jing Li ◽  
Sherif M. Hanafy ◽  
Kai Lu ◽  
Gerard Schuster

Irregular topography can cause strong scattering and defocusing of propagating surface waves, so it is important to account for such effects when inverting surface waves for shallow S-wave velocity structures. We have developed a 3D surface-wave dispersion inversion method that takes into account the topographic effects modeled by a 3D spectral element solver. The objective function is the frequency summation of the squared wavenumber differences [Formula: see text] along each azimuthal angle of the fundamental mode or higher-order modes of Rayleigh waves in each shot gather. The wavenumbers [Formula: see text] associated with the dispersion curves are calculated using the data recorded along the irregular free surface. Numerical tests on synthetic and field data demonstrate that 3D topographic wave equation dispersion inversion (TWD) can accurately invert for the S-wave velocity model from surface-wave data recorded on irregular topography. Field data tests for data recorded across an Arizona fault demonstrate that, for this example, the 2D TWD model can be as accurate as the 3D tomographic model. This suggests that in some cases, the 2D TWD inversion is preferred over 3D TWD because of its significant reduction in computational costs. Compared to the 3D P-wave velocity tomogram, the 3D S-wave tomogram agrees much more closely with the geologic model taken from the trench log. The agreement with the trench log is even better when the [Formula: see text] tomogram is computed, which reveals a sharp change in velocity across the fault. The localized velocity anomaly in the [Formula: see text] tomogram is in very good agreement with the well log. Our results suggest that integrating the [Formula: see text] and [Formula: see text] tomograms can sometimes give the most accurate estimates of the subsurface geology across normal faults.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. EN105-EN117
Author(s):  
Kai Zhang ◽  
Hongyi Li ◽  
Xiaojiang Wang ◽  
Kai Wang

In urban subsurface exploration, seismic surveys are mostly conducted along roads where seismic vibrators can be extensively used to generate strong seismic energy due to economic and environmental constraints. Generally, Rayleigh waves also are excited by the compressional wave profiling process. Shear-wave (S-wave) velocities can be inferred using Rayleigh waves to complement near-surface characterization. Most vibrators cannot excite seismic energy at lower frequencies (<5 Hz) to map greater depths during surface-wave analysis in areas with low S-wave velocities, but low-frequency surface waves ([Formula: see text]) can be extracted from traffic-induced noise, which can be easily obtained at marginal additional cost. We have implemented synthetic tests to evaluate the velocity deviation caused by offline sources, finding a reasonably small relative bias of surface-wave dispersion curves due to vehicle sources on roads. Using a 2D reflection survey and traffic-induced noise from the central North China Plain, we apply seismic interferometry to a series of 10.0 s segments of passive data. Then, each segment is selectively stacked on the acausal-to-causal ratio of the mean signal-to-noise ratio to generate virtual shot gathers with better dispersion energy images. We next use the dispersion curves derived by combining controlled source surveying with vehicle noise to retrieve the shallow S-wave velocity structure. A maximum exploration depth of 90 m is achieved, and the inverted S-wave profile and interval S-wave velocity model obtained from reflection processing appear consistent. The data set demonstrates that using surface waves derived from seismic reflection surveying and traffic-induced noise provides an efficient supplementary technique for delineating shallow structures in areas featuring thick Quaternary overburden. Additionally, the field test indicates that traffic noise can be created using vehicles or vibrators to capture surface waves within a reliable frequency band of 2–25 Hz if no vehicles are moving along the survey line.


2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. R1-R11 ◽  
Author(s):  
Dmitry Borisov ◽  
Ryan Modrak ◽  
Fuchun Gao ◽  
Jeroen Tromp

Full-waveform inversion (FWI) is a powerful method for estimating the earth’s material properties. We demonstrate that surface-wave-driven FWI is well-suited to recovering near-surface structures and effective at providing S-wave speed starting models for use in conventional body-wave FWI. Using a synthetic example based on the SEG Advanced Modeling phase II foothills model, we started with an envelope-based objective function to invert for shallow large-scale heterogeneities. Then we used a waveform-difference objective function to obtain a higher-resolution model. To accurately model surface waves in the presence of complex tomography, we used a spectral-element wave-propagation solver. Envelope misfit functions are found to be effective at minimizing cycle-skipping issues in surface-wave inversions, and surface waves themselves are found to be useful for constraining complex near-surface features.


Sign in / Sign up

Export Citation Format

Share Document