Near‐surface S‐wave velocity estimation from P‐wave polarization analysis

2009 ◽  
Author(s):  
Pascal Edme ◽  
Ed Kragh
2019 ◽  
Vol 92 ◽  
pp. 18006
Author(s):  
Yannick Choy Hing Ng ◽  
William Danovan ◽  
Taeseo Ku

Seismic cross-hole tomography has been commonly used in oil and gas exploration and the mining industry for the detection of precious resources. For near-surface geotechnical site investigation, this geophysical method is relatively new and can be used to supplement traditional methods such as the standard penetration test, coring and sampling, thus improving the effectiveness of site characterization. This paper presents a case study which was carried out on a reclaimed land in the Eastern region of Singapore. A seismic cross-hole test was performed by generating both compressional waves and shear waves into the ground. The signals were interpreted by using first-arrival travel time wave tomography and the arrival times were subsequently inverted using Simultaneous Iterative Reconstruction Technique (SIRT). A comparison with the borehole logging data indicated that P-wave velocity model cannot provide sufficient information about the soil layers, especially when the ground water table is near the surface. The S-wave velocity model seemed to agree quite well with the variation in the SPT-N value and could identify to a certain extent the interface between the different soil layers. Finally, P-wave and S-wave velocities are used to compute the Poisson's ratio distribution which gave a good indication of the degree of saturation of the soil.


2019 ◽  
Vol 218 (3) ◽  
pp. 1873-1891 ◽  
Author(s):  
Farbod Khosro Anjom ◽  
Daniela Teodor ◽  
Cesare Comina ◽  
Romain Brossier ◽  
Jean Virieux ◽  
...  

SUMMARY The analysis of surface wave dispersion curves (DCs) is widely used for near-surface S-wave velocity (VS) reconstruction. However, a comprehensive characterization of the near-surface requires also the estimation of P-wave velocity (VP). We focus on the estimation of both VS and VP models from surface waves using a direct data transform approach. We estimate a relationship between the wavelength of the fundamental mode of surface waves and the investigation depth and we use it to directly transform the DCs into VS and VP models in laterally varying sites. We apply the workflow to a real data set acquired on a known test site. The accuracy of such reconstruction is validated by a waveform comparison between field data and synthetic data obtained by performing elastic numerical simulations on the estimated VP and VS models. The uncertainties on the estimated velocity models are also computed.


2021 ◽  
Vol 40 (8) ◽  
pp. 567-575
Author(s):  
Myrto Papadopoulou ◽  
Farbod Khosro Anjom ◽  
Mohammad Karim Karimpour ◽  
Valentina Laura Socco

Surface-wave (SW) tomography is a technique that has been widely used in the field of seismology. It can provide higher resolution relative to the classical multichannel SW processing and inversion schemes that are usually adopted for near-surface applications. Nevertheless, the method is rarely used in this context, mainly due to the long processing times needed to pick the dispersion curves as well as the inability of the two-station processing to discriminate between higher SW modes. To make it efficient and to retrieve pseudo-2D/3D S-wave velocity (VS) and P-wave velocity (VP) models in a fast and convenient way, we develop a fully data-driven two-station dispersion curve estimation, which achieves dense spatial coverage without the involvement of an operator. To handle higher SW modes, we apply a dedicated time-windowing algorithm to isolate and pick the different modes. A multimodal tomographic inversion is applied to estimate a VS model. The VS model is then converted to a VP model with the Poisson's ratio estimated through the wavelength-depth method. We apply the method to a 2D seismic exploration data set acquired at a mining site, where strong lateral heterogeneity is expected, and to a 3D pilot data set, recorded with state-of-the-art acquisition technology. We compare the results with the ones retrieved from classical multichannel analysis.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. EN99-EN108 ◽  
Author(s):  
Zongbo Xu ◽  
T. Dylan Mikesell ◽  
Jianghai Xia ◽  
Feng Cheng

Passive-source seismic-noise-based surface-wave methods are now routinely used to investigate the near-surface geology in urban environments. These methods estimate the S-wave velocity of the near surface, and two methods that use linear recording arrays are seismic interferometry (SI) and refraction microtremor (ReMi). These two methods process noise data differently and thus can yield different estimates of the surface-wave dispersion, the data used to estimate the S-wave velocity. We have systematically compared these two methods using synthetic data with different noise source distributions. We arrange sensors in a linear survey grid, which is conveniently used in urban investigations (e.g., along roads). We find that both methods fail to correctly determine the low-frequency dispersion characteristics when outline noise sources become stronger than inline noise sources. We also identify an artifact in the ReMi method and theoretically explain the origin of this artifact. We determine that SI combined with array-based analysis of surface waves is the more accurate method to estimate surface-wave phase velocities because SI separates surface waves propagating in different directions. Finally, we find a solution to eliminate the ReMi artifact that involves the combination of SI and the [Formula: see text]-[Formula: see text] transform, the array processing method that underlies the ReMi method.


2020 ◽  
Author(s):  
Brady A. Flinchum ◽  
Eddie Banks ◽  
Michael Hatch ◽  
Okke Batelaan ◽  
Luk Peeters ◽  
...  

Abstract. Identifying and quantifying recharge processes linked to ephemeral surface water features is challenging due to their episodic nature. We use a unique combination of well-established near-surface geophysical methods to provide evidence of a surface and groundwater connection under a small ephemeral recharge feature in a flat, semi-arid region near Adelaide, Australia. We use a seismic survey to obtain P-wave velocity through travel-time tomography and S-wave velocity through the multichannel analysis of surface waves. The ratios between P-wave and S-wave velocities allow us to infer the position of the water table. A separate survey was used to obtain electrical conductivity measurements from time-domain electromagnetics and water contents were acquired by downhole nuclear magnetic resonance. The combined geophysical observations provide evidence to support a groundwater mound underneath a subtle ephemeral feature. Our results suggest that recharge is localized and that small-scale ephemeral features play an important role in groundwater recharge. Furthermore, we show that a combined geophysical approach can provide a unique perspective that helps shape the hydrogeological conceptualization of a semi-arid region.


2021 ◽  
Vol 2110 (1) ◽  
pp. 012002
Author(s):  
A R Puhi ◽  
P Ariyanto ◽  
B Pranata ◽  
B S Prayitno

Abstract Lampung region is seismically and volcanic active because located in subduction zone of Indo-Australian and Eurasian plate. We applied receiver function and stacking H-k analysis to estimate the crustal structure in Lampung region. We used teleseismic earthquake data (epicenter distance 30°-90°) and M>6 recorded at 3 seismic broadband stations owned by Agency for Meteorology Climatology and Geophysics (BMKG). Those stations are PSLI (located on Sebesi Island approximately 20 km from Anak Krakatau) represented volcanic arc zone, KASI (located on Kota Agung, Lampung) represented Sumatran Fault Zone and KLI (located on Kotabumi, Lampung) represented back-arc basin. Crustal thickness estimated at PSLI station 32-36 km, KASI station 36-40 km, and KLI station 30-36 km. Furthermore, in 3 stations P wave velocity estimated 4.1-11 km/s, S wave velocity 2.2-6.2 km/s, while vp/vs value estimated 1.7-2.05. We estimated Anak Krakatau volcano’s magma chamber beneath PSLI station in depth 16-30 km, Great Sumatran Fault structure in depth about 8-14 km beneath KASI station, and thick sediment layer about 4 km near surface beneath KLI station. This study result is expected to explain more detail crustal of Lampung region and can be useful for developing of BMKG’s seismic monitoring systems and other geophysical fields in future.


Sign in / Sign up

Export Citation Format

Share Document