Modeling wave dispersion and attenuation characteristics of complex porous media containing multi-type and multi-scale heterogeneities

Author(s):  
Yirong Wang ◽  
Luanxiao Zhao ◽  
Jianhua Geng
Fractals ◽  
2007 ◽  
Vol 15 (02) ◽  
pp. 127-138
Author(s):  
ALEXANDER DROUJININE ◽  
VLADIMIR ROK

We have investigated wave scattering by chaotic fractured systems of fractal geometry with random spatial variation that causes energy loss of the directly propagated field. We have examined simple analytic solutions in fractal poroelastic media. These solutions may be characterized by their frequency-power-law (FPL) signature caused by wave dispersion and attenuation. It has been proved that medium memory effects cause smoothing of the wavefield in the vicinity of the wavefront and rapid amplitude decay far from the wavefront. It appears that finite-bandwidth signals are delayed with respect to the wavefront in comparable elastic media. To examine the FPL dependence of direct body waves propagating in a homogeneous medium containing fractal inhomogeneities, we compute acoustic finite-difference snapshots in the frequency range f = 20 - 200 Hz. Numerical results show that the fractal dimension can be estimated from the FPL dependence of the scattered wavefield. Applications to fracture characterization are considered. Results are important for multi-scale depth imaging, inverse Q filtering, fracture detection, and integrated geophysical reservoir monitoring.


Sensors ◽  
2014 ◽  
Vol 14 (8) ◽  
pp. 15067-15083 ◽  
Author(s):  
Maria Strantza ◽  
Olivia Louis ◽  
Demosthenes Polyzos ◽  
Frans Boulpaep ◽  
Danny van Hemelrijck ◽  
...  

2021 ◽  
Author(s):  
Andres Gonzalez ◽  
Zoya Heidari ◽  
Olivier Lopez

Abstract Depositional mechanisms of sediments and post-depositional process often cause spatial variation and heterogeneity in rock fabric, which can impact the directional dependency of petrophysical, electrical, and mechanical properties. Quantification of the directional dependency of the aforementioned properties is fundamental for the appropriate characterization of hydrocarbon-bearing reservoirs. Anisotropy quantification can be accomplished through numerical simulations of physical phenomena such as fluid flow, gas diffusion, and electric current conduction in porous media using multi-scale image data. Typically, the outcome of these simulations is a transport property (e.g., permeability). However, it is also possible to quantify the tortuosity of the media used as simulation domain, which is a fundamental descriptor of the microstructure of the rock. The objectives of this paper are (a) to quantify tortuosity anisotropy of porous media using multi-scale image data (i.e., whole-core CT-scan and micro-CT-scan image stacks) through simulation of electrical potential distribution, diffusion, and fluid flow, and (b) to compare electrical, diffusional, and hydraulic tortuosity. First, we pre-process the images (i.e., CT-scan images) to remove non-rock material visual elements (e.g., core barrel). Then, we perform image analysis to identify different phases in the raw images. Then, we proceed with the numerical simulations of electric potential distribution. The simulation results are utilized as inputs for a streamline algorithm and subsequent direction-dependent electrical tortuosity estimation. Next, we conduct numerical simulation of diffusion using a random walk algorithm. The distance covered by each walker in each cartesian direction is used to compute the direction-dependent diffusional tortuosity. Finally, we conduct fluid-flow simulations to obtain the velocity distribution and compute the direction-dependent hydraulic tortuosity. The simulations are conducted in the most continuous phase of the segmented whole-core CT-scan image stacks and in the segmented pore-space of the micro-CT-scan image stacks. Finally, the direction-dependent tortuosity values obtained with each technique are employed to assess the anisotropy of the evaluated samples. We tested the introduced workflow on dual energy whole-core CT-scan images and on smaller scale micro-CT-scan images. The whole-core CT-scan images were obtained from a siliciclastic depth interval, composed mainly by spiculites. Micro-CT-scan images we obtained from Berea Sandstone and Austin Chalk formations. We observed numerical differences in the estimates of direction-dependent electrical, diffusional, and hydraulic tortuosity for both types of image data employed. The highest numerical differences were observed when comparing electrical and hydraulic tortuosity with diffusional tortuosity. The observed differences were significant specially in anisotropic samples. The documented comparison provides useful insight in the selection process of techniques for estimation of tortuosity. The use of core-scale image data in the proposed workflow provides semi-continuous estimates of tortuosity and tortuosity anisotropy which is typically not attainable when using pore-scale images. Additionally, the semi-continuous nature of the tortuosity and tortuosity anisotropy estimates in whole-core CT-scan image data provides an excellent tool for the selection of core plugs coring locations.


Sign in / Sign up

Export Citation Format

Share Document