Seismic data enhancement and targeted noise removal using time-frequency masking guided by beamformed data

Author(s):  
Andrey Bakulin ◽  
Dmitry Neklyudov ◽  
Ilya Silvestrov
Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. V211-V227 ◽  
Author(s):  
S. Mostafa Mousavi ◽  
Charles A. Langston

Recorded seismic signals are often corrupted by noise. We have developed an automatic noise-attenuation method for single-channel seismic data, based upon high-resolution time-frequency analysis. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and attenuated more easily in this reassigned domain. The threshold level is estimated using a general cross-validation approach that does not rely on any prior knowledge about the noise level. The efficiency of the thresholding has been improved by adding a preprocessing step based on kurtosis measurement and a postprocessing step based on adaptive hard thresholding. The proposed algorithm can either attenuate the noise (either white or colored) and keep the signal or remove the signal and keep the noise. Hence, it can be used in either normal denoising applications or preprocessing in ambient noise studies. We tested the performance of the proposed method on synthetic, microseismic, and earthquake seismograms.


2014 ◽  
Vol 490-491 ◽  
pp. 1356-1360 ◽  
Author(s):  
Shu Cong Liu ◽  
Er Gen Gao ◽  
Chen Xun

The wavelet packet transform is a new time-frequency analysis method, and is superior to the traditional wavelet transform and Fourier transform, which can finely do time-frequency dividion on seismic data. A series of simulation experiments on analog seismic signals wavelet packet decomposition and reconstruction at different scales were done by combining different noisy seismic signals, in order to achieve noise removal at optimal wavelet decomposition scale. Simulation results and real data experiments showed that the wavelet packet transform method can effectively remove the noise in seismic signals and retain the valid signals, wavelet packet transform denoising is very effective.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2013 ◽  
Vol 56 (7) ◽  
pp. 1200-1208 ◽  
Author(s):  
Yue Li ◽  
BaoJun Yang ◽  
HongBo Lin ◽  
HaiTao Ma ◽  
PengFei Nie

2018 ◽  
Vol 6 (4) ◽  
pp. T967-T983
Author(s):  
Ramses G. Meza ◽  
J. Antonio Sierra ◽  
John P. Castagna ◽  
Umberto Barbato

Using time-frequency and time-phase analysis we found that for an isolated thin bed in a binary-impedance setting, there is no observable sensitivity in preferential illumination as layered net-to-gross (NTG) changes within the isolated thin bed, regardless of the way the internal layering is distributed — either uniformly or semirandomly. The NTG signature is observed on the amplitude (magnitude) responses, rather than any specific frequency or phase component. On the other hand, external mutual thin-bed interference can significantly change the preferred phase component for each participating target. This phenomenon is largely driven by the embedded seismic wavelet that determines the nominal seismic response of an isolated thin layer and what phase component would preferentially illuminate it. For vertical separations between mutually interfering and elastically comparable thin beds in which mutual constructive interference is achieved, the target bed will be preferentially illuminated at a phase component that is very close to that of a total seismic isolation, whereas the occurrence of mutual destructive interference will cause a significant departure on the phase preferential illumination from that of an isolated seismic thin bed. All these observations can provide an avenue to yield more robust stratigraphic interpretations of seismic data and enhance the confidence on subsurface description.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. V307-V317 ◽  
Author(s):  
Hao Wu ◽  
Bo Zhang ◽  
Tengfei Lin ◽  
Fangyu Li ◽  
Naihao Liu

Seismic noise attenuation is an important step in seismic data processing. Most noise attenuation algorithms are based on the analysis of time-frequency characteristics of the seismic data and noise. We have aimed to attenuate white noise of seismic data using the convolutional neural network (CNN). Traditional CNN-based noise attenuation algorithms need prior information (the “clean” seismic data or the noise contained in the seismic) in the training process. However, it is difficult to obtain such prior information in practice. We assume that the white noise contained in the seismic data can be simulated by a sufficient number of user-generated white noise realizations. We then attenuate the seismic white noise using the modified denoising CNN (MDnCNN). The MDnCNN does not need prior clean seismic data nor pure noise in the training procedure. To accurately and efficiently learn the features of seismic data and band-limited noise at different frequency bandwidths, we first decomposed the seismic data into several intrinsic mode functions (IMFs) using variational mode decomposition and then apply our denoising process to the IMFs. We use synthetic and field data examples to illustrate the robustness and superiority of our method over the traditional methods. The experiments demonstrate that our method can not only attenuate most of the white noise but it also rejects the migration artifacts.


2019 ◽  
Vol 7 (3) ◽  
pp. T701-T711
Author(s):  
Jianhu Gao ◽  
Bingyang Liu ◽  
Shengjun Li ◽  
Hongqiu Wang

Hydrocarbon detection is always one of the most critical sections in geophysical exploration, which plays an important role in subsequent hydrocarbon production. However, due to the low signal-to-noise ratio and weak reflection amplitude of deep seismic data, some conventional methods do not always provide favorable hydrocarbon prediction results. The interesting dolomite reservoirs in Central Sichuan are buried over an average depth of 4500 m, and the dolomite rocks have a low porosity below approximately 4%, which is measured by well-logging data. Furthermore, the dominant system of pores and fractures as well as strong heterogeneity along the lateral and vertical directions lead to some difficulties in describing the reservoir distribution. Spectral decomposition (SD) has become successful in illuminating subsurface features and can also be used to identify potential hydrocarbon reservoirs by detecting low-frequency shadows. However, the current applications for hydrocarbon detection always suffer from low resolution for thin reservoirs, probably due to the influence of the window function and without a prior constraint. To address this issue, we developed sparse inverse SD (SISD) based on the wavelet transform, which involves a sparse constraint of time-frequency spectra. We focus on investigating the applications of sparse spectral attributes derived from SISD to deep marine dolomite hydrocarbon detection from a 3D real seismic data set with an area of approximately [Formula: see text]. We predict and evaluate gas-bearing zones in two target reservoir segments by analyzing and comparing the spectral amplitude responses of relatively high- and low-frequency components. The predicted results indicate that most favorable gas-bearing areas are located near the northeast fault zone in the upper reservoir segment and at the relatively high structural positions in the lower reservoir segment, which are in good agreement with the gas-testing results of three wells in the study area.


2013 ◽  
Vol 706-708 ◽  
pp. 785-788
Author(s):  
Guo Shun Yuan ◽  
Li Qing Geng

Wavelet transform algorithm with its unique multi-resolution analysis and it is in the time - frequency domain has the advantage of the ability to characterize the local signal characteristics, let it has been widely used in signal detection, noise removal, feature extraction, image compression and so on. In this paper, on the basis of already wavelet transform ECG noise removal, proposed a median filter optimization algorithm, enables ECG noise removal effect is more obvious, also for the Eigen values detection of ECG lay a better foundation.


Sign in / Sign up

Export Citation Format

Share Document