Beam of 15° one-way wave prestack depth migration in VTI media

Author(s):  
Bohan Zhang ◽  
Shaoyong Liu ◽  
Huazhong Wang
2005 ◽  
Author(s):  
Jiaxiang Ren ◽  
Clive Gerrard ◽  
James McClean ◽  
Mikhail Orlovich

Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Debashish Sarkar ◽  
Ilya Tsvankin

One of the main challenges in anisotropic velocity analysis and imaging is simultaneous estimation of velocity gradients and anisotropic parameters from reflection data. Approximating the subsurface by a factorized VTI (transversely isotropic with a vertical symmetry axis) medium provides a convenient way of building vertically and laterally heterogeneous anisotropic models for prestack depthmigration. The algorithm for P‐wave migration velocity analysis (MVA) introduced here is designed for models composed of factorized VTI layers or blocks with constant vertical and lateral gradients in the vertical velocity VP0. The anisotropic MVA method is implemented as an iterative two‐step procedure that includes prestack depth migration (imaging step) followed by an update of the medium parameters (velocity‐analysis step). The residual moveout of the migrated events, which is minimized during the parameter updates, is described by a nonhyperbolic equation whose coefficients are determined by 2D semblance scanning. For piecewise‐factorized VTI media without significant dips in the overburden, the residual moveout of P‐wave events in image gathers is governed by four effective quantities in each block: (1) the normal‐moveout velocity Vnmo at a certain point within the block, (2) the vertical velocity gradient kz, (3) the combination kx[Formula: see text] of the lateral velocity gradient kx and the anisotropic parameter δ, and (4) the anellipticity parameter η. We show that all four parameters can be estimated from the residual moveout for at least two reflectors within a block sufficiently separated in depth. Inversion for the parameter η also requires using either long‐spread data (with the maximum offset‐to‐depth ratio no less than two) from horizontal interfaces or reflections from dipping interfaces. To find the depth scale of the section and build a model for prestack depth migration using the MVA results, the vertical velocity VP0 needs to be specified for at least a single point in each block. When no borehole information about VP0 is available, a well‐focused image can often be obtained by assuming that the vertical‐velocity field is continuous across layer boundaries. A synthetic test for a three‐layer model with a syncline structure confirms the accuracy of our MVA algorithm in estimating the interval parameters Vnmo, kz, kx, and η and illustrates the influence of errors in the vertical velocity on the image quality.


2006 ◽  
Vol 2006 (1) ◽  
pp. 1-5
Author(s):  
Ren Jiaxiang ◽  
Gerrard Clive ◽  
Long Andrew ◽  
McClean James ◽  
Orlovich Mikhail

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


2006 ◽  
Author(s):  
Scott MacKay ◽  
Héctor Ramírez Jiménez ◽  
Jorge San Martín Romero ◽  
Mark Morford

Sign in / Sign up

Export Citation Format

Share Document