METHANE HYDRATE QUANTIFICATION FROM MUD LINE TO BOTTOM SIMULATING REFLECTOR

Author(s):  
Richard C. Uden ◽  
Jack P. Dvorkin ◽  
Takao Inamori
Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 92-100 ◽  
Author(s):  
Matthew J. Hornbach ◽  
W. Steven Holbrook ◽  
Andrew R. Gorman ◽  
Kara L. Hackwith ◽  
Daniel Lizarralde ◽  
...  

Seismic detection of methane hydrate often relies on indirect or equivocal methods. New multichannel seismic reflection data from the Blake Ridge, located approximately 450 km east of Savannah, Georgia, show three direct seismic indicators of methane hydrate: (1) a paleo bottom‐simulating reflector (BSR) formed when methane gas froze into methane hydrate on the eroding eastern flank of the Blake Ridge, (2) a lens of reduced amplitudes and high P‐wave velocities found between the paleo‐BSR and BSR, and (3) bright spots within the hydrate stability zone that represent discrete layers of concentrated hydrate formed by upward migration of gas. Velocities within the lens (∼1910 m/s) are significantly higher than velocities in immediately adjacent strata (1820 and 1849 m/s). Conservative estimates show that the hydrate lens contains at least 13% bulk methane hydrate within a 2‐km3 volume, yielding 3.2 × 1010kg [1.5 TCF (4.2 × 1010 m3] of methane. Low seismic amplitudes coupled with high interval velocities within the lens offer evidence for possible methane hydrate “blanking.” Hydrate bright spots yield velocities as high as 2100 m/s, with bulk hydrate concentrations predicted as high as 42% in an approximately 15‐m thick layer. Our results show that, under certain circumstances, hydrate in marine sediments can be directly detected in seismic reflections but that quantification of hydrate concentrations requires accurate velocity information.


2018 ◽  
Author(s):  
Saurav Parashar ◽  
Raghvendra Pratap Singh ◽  
Malay Kumar Das

2018 ◽  
Author(s):  
Mingjun Yang ◽  
Yi Gao ◽  
Hang Zhou ◽  
Bingbing Chen ◽  
Yongchen Song

2020 ◽  
Vol 13 (2) ◽  
pp. 185-203
Author(s):  
Dong Yan ◽  
Paolo Davide Farah ◽  
Tivadar Ötvös ◽  
Ivana Gaskova

Abstract Considering the fact that its existence is abundant while maintaining the ability to generate freshwater while burning, methane hydrates have been classified as sources of sustainable energy. China currently maintains an international role in developing technology meant to explore offshore methane hydrates buried under the mud of the seabed, their primary laboratory being the South China Sea. However, such a process does not come without its hazards and fatal consequences, ranging from the destruction of the flora and fauna, the general environment, and—the greatest hazard of all—the cost of human life. The United Nations Convention on the Law of the Sea (hereinafter ‘UNCLOS’), being an important international legal regime and instrument, has assigned damage control during the exploration of methane hydrates, as being the responsibilities and liability of individual sovereign states and corporations. China adopted the Deep Seabed Mining Law (hereinafter the DSM Law) on 26 February 2016, which came into force on the 1 of May 2016; a regulation providing the legal framework also for the Chinese government’s role in methane hydrate exploratory activities. This article examines the role of the DSM Law and its provisions, as well as several international documents intended to prevent transboundary environmental harm from arising, as a result of offshore methane hydrate extraction. Despite the obvious risk of harm to the environment, the DSM Law has made great strides in regulating exploratory activities so as to meet the criteria of the UNCLOS. However, this article argues that neither the UNCLOS nor the DSM Law are adequately prepared to address transboundary harm triggered by the exploitation of offshore methane hydrates. In particular, the technology of such extraction is still at an experimental stage, and potential risks remain uncertain—and even untraceable—for cross-jurisdictional claims. The article intends to seek available legal instruments or models, to overhaul the incapacity within the current governing framework, and offers suggestions supporting national and international legislative efforts towards protecting the environment during methane hydrate extraction.


2021 ◽  
Vol 125 (33) ◽  
pp. 18483-18493
Author(s):  
Kehan Li ◽  
Bingbing Chen ◽  
Mingjun Yang ◽  
Yongchen Song ◽  
Lanlan Jiang

Sign in / Sign up

Export Citation Format

Share Document