Using the combination of conventional logs, borehole image log, and six-arm caliper for determining the orientation and magnitude of principal in-situ stresses: A case study in Zagros suture zone in Kurdistan Region of Iraq

2021 ◽  
Author(s):  
Nazir Mafakheri Bashmagh ◽  
Weiren Lin ◽  
Foad Yousefi
Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 213
Author(s):  
Elena Benvenuti ◽  
Giulia Maurillo

The study of the seismogenic mechanical effects induced by oil & gas activities is a socially impacting issue of environmental engineering as well as a challenging task in computational geomechanics. It requires the solution of a coupled problem governed by poroelastic and fluid flow equations in a faulted domain in the presence of in situ stress fields. As a viable alternative to state-of-the-art academical computational models, the present study contributes a simplified methodology based on a commercial Finite Element multiphysics software. The focus is on the evaluation of the link between the oil & gas activities of the Cavone oilfield reservoir, located in North Italy and adjacent to the Mirandola fault, and the recent seismic sequence that struck Emilia in May 2012. An operational coupled fluid-geomechanical procedure is developed where the Cavone reservoir is subjected to the typical in situ stresses, and the nearby Mirandola fault is modelled as an impervious thin layer.


2013 ◽  
Vol 16 (04) ◽  
pp. 401-411
Author(s):  
Marie Van Steene ◽  
Mario Ardila ◽  
Richard Nelson ◽  
Amr Fekry ◽  
Adel Farghaly

Summary In hydrocarbon reservoirs, fluid types can often vary from dry gas to volatile oil in the same column. Because of varying and unknown invasion patterns and inexact clay-volume estimations, fluid-types differentiation on the basis of conventional logs is not always conclusive. A case study is presented by use of advanced nuclear-magnetic-resonance (NMR) techniques in conjunction with advanced downhole-fluid-analysis (DFA) measurements and focused sampling from wireline formation testers (WFTs) to accurately assess the hydrocarbon-type variations. The saturation-profiling data from an NMR diffusion-based tool provides fluid-typing information in a continuous depth log. This approach can be limited by invasion. On the other hand, formation testers allow taking in-situ measurements of the virgin fluids beyond the invaded zone, but at discrete depths only. Thus, the two measurements ideally complement each other. In this case study, NMR saturation profiling was acquired over a series of channelized reservoirs. There is a transition from a water zone to an oil zone, and then to a rich-gas reservoir, indicated by both the DFA and the NMR measurements. Above the rich gas, is a dry-gas interval that is conclusively in a separate compartment. Diffusion-based NMR identifies the fluid type in a series of thin reservoirs above this main section, in which no samples were taken. NMR and DFA both detect compositional gradients, invisible to conventional logs. The work presented in this paper demonstrates how the integration of measurements from various tools can lead to a better understanding of fluid types and distribution.


2022 ◽  
Author(s):  
Arjang Gandomkar ◽  
David Katz ◽  
Ricardo Gomez ◽  
Anders Gundersen ◽  
Parvez Khan

Abstract Casing Deformation has plagued numerous unconventional basins globally, in particular with plug-and-perforation (also known as plug-and-perf) operations. This infamous issue can greatly influence 20-30% of field productivity of horizontal wells in shale and tight oil fields (Jacobs, 2020). When a wellbore lies in a target zone and intersects many natural fractures, these fractures are perturbed by hydraulic stimulation. Therefore, rock or bedding slippage may occur, resulting in casing deformation. This phenomenon is escalated by active tectonics, high anisotropic in-situ stresses, and poor cement design. This paper evaluates the mechanisms of casing deformation. It reviews how these conditions can be evaluated in the target zone. The mitigation procedures to reduce casing deformation through either well planning or completions design are discussed. Finally, an alternative completion method to plug-and-perf allowing limited entry completion technique in restricted casing with a field case study will be discussed.


2018 ◽  
pp. 60-67
Author(s):  
Henrika Pihlajaniemi ◽  
Anna Luusua ◽  
Eveliina Juntunen

This paper presents the evaluation of usersХ experiences in three intelligent lighting pilots in Finland. Two of the case studies are related to the use of intelligent lighting in different kinds of traffic areas, having emphasis on aspects of visibility, traffic and movement safety, and sense of security. The last case study presents a more complex view to the experience of intelligent lighting in smart city contexts. The evaluation methods, tailored to each pilot context, include questionnaires, an urban dashboard, in-situ interviews and observations, evaluation probes, and system data analyses. The applicability of the selected and tested methods is discussed reflecting the process and achieved results.


Sign in / Sign up

Export Citation Format

Share Document