scholarly journals The effect of present day in situ stresses and paleo-stresses on locating sweet spots in unconventional reservoirs, a case study from Moomba-Big Lake fields, Cooper Basin, South Australia

2013 ◽  
Vol 3 (4) ◽  
pp. 207-221 ◽  
Author(s):  
H. Abul Khair ◽  
D. Cooke ◽  
M. Hand
2013 ◽  
Vol 53 (1) ◽  
pp. 217 ◽  
Author(s):  
Hani Abul Khair ◽  
Dennis Cooke ◽  
Martin Hand

The effect of stresses on permeability is a combination of external stress and pore pressure. The authors examine if and how present-day in-situ stresses and the spatial distribution of permeable locations in the Moomba-Big Lake fields in the Cooper Basin are correlated. Image logs, well logs, and formation tests are analysed and the orientation and magnitudes of the three principal stresses are calculated. A 3D model was constructed and the calculated stress magnitudes and orientations were applied to the model using the software Poly3D. The resulting stress distribution in the present-day stress state showed a potential sweet spot in the Big Lake field, which is presently the location of a gas pool that forms, with the Moomba field, one-third of the gas reserve in SA. No potential sweet spots, however, are located in the Moomba area. The authors also used the finite element method (FEM) and the boundary element method (BEM) for modelling the behaviour of folds, fractures, and faults and for mimicking the tectonic history of the basin. Software codes Dynel3D and Traptester were used to examine the validity of geomechanical restoration techniques for locating sweet spots in the Moomba-Big Lake fields. The methodology attempts to reconstruct the present-day structural and geometrical placement and to predict fractures generated due to stresses released during past tectonic events. Predicted stresses succeeded in mapping the same sweet spot in the Big Lake field using both software codes. Accordingly, the present permeability and production rate is controlled by a combination of present-day and stored stresses.


Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 213
Author(s):  
Elena Benvenuti ◽  
Giulia Maurillo

The study of the seismogenic mechanical effects induced by oil & gas activities is a socially impacting issue of environmental engineering as well as a challenging task in computational geomechanics. It requires the solution of a coupled problem governed by poroelastic and fluid flow equations in a faulted domain in the presence of in situ stress fields. As a viable alternative to state-of-the-art academical computational models, the present study contributes a simplified methodology based on a commercial Finite Element multiphysics software. The focus is on the evaluation of the link between the oil & gas activities of the Cavone oilfield reservoir, located in North Italy and adjacent to the Mirandola fault, and the recent seismic sequence that struck Emilia in May 2012. An operational coupled fluid-geomechanical procedure is developed where the Cavone reservoir is subjected to the typical in situ stresses, and the nearby Mirandola fault is modelled as an impervious thin layer.


2001 ◽  
Vol 41 (1) ◽  
pp. 185 ◽  
Author(s):  
R.R. Hillis ◽  
J.G.G. Morton ◽  
D.S. Warner ◽  
R.K. Penney

Deep basin hydrocarbon accumulations have been widely recognised in North America and include the giant fields of Elmworth and Hoadley in the Western Canadian Basin. Deep basin accumulations are unconventional, being located downdip of water-saturated rocks, with no obvious impermeable barrier separating them. Gas accumulations in the Nappamerri Trough, Cooper Basin, exhibit several characteristics consistent with North American deep basin accumulations. Log evaluation suggests thick gas columns and tests have recovered only gas and no water. The resistivity of the entire rock section exceeds 20 Ωm over large intervals, and, as in known deep basin accumulations, the entire rock section may contain gas. Gas in the Nappamerri Trough is located within overpressured compartments which witness the hydraulic isolation necessary for gas saturation outside conventional closure. Furthermore, the Nappamerri Trough, like known deep basin accumulations, has extensive, coal-rich source rocks capable of generating enormous hydrocarbon volumes. The above evidence for a deep basin-type gas accumulation in the Nappamerri Trough is necessarily circumstantial, and the existence of a deep gas accumulation can only be proven unequivocally by drilling wells outside conventional closure.Exploration for deep basin-type accumulations should focus on depositional-structural-diagenetic sweet spots (DSDS), irrespective of conventional closure. This is of particular significance for a potential Nappamerri Trough deep basin accumulation because depositional models suggest that the best net/gross may be in structural lows, inherited from syndepositional lows, that host stacked channel sands within channel belt systems. Limiting exploration to conventionally-trapped gas may preclude intersection with such sweet spots.


Sign in / Sign up

Export Citation Format

Share Document