target zone
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 42)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Arjang Gandomkar ◽  
David Katz ◽  
Ricardo Gomez ◽  
Anders Gundersen ◽  
Parvez Khan

Abstract Casing Deformation has plagued numerous unconventional basins globally, in particular with plug-and-perforation (also known as plug-and-perf) operations. This infamous issue can greatly influence 20-30% of field productivity of horizontal wells in shale and tight oil fields (Jacobs, 2020). When a wellbore lies in a target zone and intersects many natural fractures, these fractures are perturbed by hydraulic stimulation. Therefore, rock or bedding slippage may occur, resulting in casing deformation. This phenomenon is escalated by active tectonics, high anisotropic in-situ stresses, and poor cement design. This paper evaluates the mechanisms of casing deformation. It reviews how these conditions can be evaluated in the target zone. The mitigation procedures to reduce casing deformation through either well planning or completions design are discussed. Finally, an alternative completion method to plug-and-perf allowing limited entry completion technique in restricted casing with a field case study will be discussed.


2021 ◽  
Author(s):  
Talal Al-Aulaqi ◽  
Hussain Al Bulushi ◽  
Hashim Al Hashmi ◽  
Sultan Al Amri ◽  
Ali Al Habsi ◽  
...  

Abstract Over the last 50 years, thermal EOR has been an effective method for reducing the viscosity of and recovering heavy oil from deep reservoirs. In mature thermal EOR projects, conformance is one of the main challenges for maximizing reserves and meeting long-term production expectations. In this paper, Occidental presents a novel pilot to address thermal conformance in the Mukhaizna field in Oman. This is a thermal EOR operation in deep reservoirs (> 2,000 ft) with extremely high viscosity (>10,000 cp) in harsh desert conditions with temperatures exceeding 500°F. The pilot area is a mature thermal area with 15 years of continuous steamflood operations. The novel conformance technique, based on a combination of chemical and zonal mechanical isolation systems, was developed in-house in a low oil price environment. The pilot area consists of multiple reservoir zones that have undergone vertical steam injection since 2005. Thermal conformance has emerged as a challenge because more than 60% of the injected steam has been preferentially entering the high-permeability zones, with only 40% of the steam entering the other zones, which hold a larger amount the remaining oil. The subsurface and well engineering teams collaborated to design a rigless operation using dual coiled tubing units, one for cooling water and one pumping a chemical gelation recipe that gels at a certain trigger gelation temperature at the target zone. Zonal isolation of the reservoir is achieved using a novel inflatable packer triggered mechanically by ball gravitation through coiled tubing at 500°F and retrieved after the temporary zonal isolation. The well and reservoir surveillance included gathering data for injectivity assessment, vertical injection logging, temperature profiles, tracer tests in offset producers, and well testing for determining water cut. The pilot improved vertical conformance, as injection logging showed 40% steam reduction was achieved in the target zone, and more steam was re-allocated to the shallow zones. In addition, there was a water cut reduction of more than 20% in offset producers, and oil production tripled over a period of 3 months, which paid back the cost of the pilot and generated positive cash flow. To our knowledge, based on an SPE literature search, this is the first successful thermal conformance operation conducted with the following combination of technologies: 1) Placing a novel chemical recipe through temporary zonal isolation with an inflatable packer, and 2) Using rigless operation of coiled tubing units at harsh conditions of >500°F and high pressure >1000 psi. The outcomes open a new frontier for thermal EOR development in multi-stack reservoirs, offering better utilization of steam injection and improving mobility control over the field life cycle. The cost of the pilot project was paid off in the first 6 weeks, and all chemicals used were developed in an eco-friendly system.


2021 ◽  
Author(s):  
Idabagusgede Hermawanmanuab ◽  
Rayan Ghanim ◽  
Enrico Ferreira ◽  
Mohamed Gouda

Abstract The main objective was to drill a power water horizontal injector within the sweet spot of a thin fractured and heterogeneous reservoir to achieve pressure stabilization in this producing field and an optimized sweep at the bottom of reservoir to maximize and prolong production. A traditional triple-combo logging while drilling (LWD) portfolio cannot fulfill these challenging reservoir navigation and formation evaluation (FE) objectives simultaneously because of the limited number of measurements. Hence, a more holistic approach is required to optimize the well placement via the integration of real-time LWD FE measurements to maximize the injectivity. An integrated LWD assembly was utilized and offset well FE data were studied to select the best zone for well placement to provide the best injectivity and production of the remaining oil towards the base of the reservoir. Extensive pre-well modeling was performed, based on offset well data with multiple scenarios reviewed to cover all eventualities. Another challenge was to place the wellbore in a relatively low resistive zone (water wet) in contrast to normal development wells where the wellbore is navigated in high resistive hydrocarbon bearing zones, so conventional distance to bed boundary mapping methodology was not applicable. To overcome this challenge; advanced Multi Component (MC) While Drilling resistivity inversion was proposed in conjunction with deep azimuthal resistivity technology. The benefit of this technique is in providing the resistivity of each layer within the depth of detection along with thickness and dip of each layer. Resistivity inversion results were correlated with nuclear magnetic resonance (NMR) porosity and volumetric data to identify the best zone for well placement. As MC inversion was able to map multiple layers within ~7 ft radius depth of detection, changing thicknesses and dip of each layer; the geosteering team was able to make proactive recommendations based on the inversion results. These proactive trajectory adjustments resulted in maintaining the wellbore within a thin target zone (1-3 ft in thickness) also confirmed by NMR and Formation Testing Service (FTS) in real-time, achieving excellent net-to-gross, which otherwise would not have been possible. The hexa-combo LWD assembly supported optimum well placement and provided valuable information about the geological structure through the analysis of high-resolution electrical images identifying the structural events which cause compartmentalization, confirmed by FTS results. This integrated LWD approach enabled proactive well trajectory adjustments to maintain the wellbore within the optimum porous, permeable and fractured target zone. This integrated methodology improved the contact within the water-injection target of the horizontal section, in a challenging thin reservoir and achieved 97.5 % exposure. Using an integrated LWD hexa-combo BHA and full real-time analysis the objective was achieved in one run with zero Non-Productive Time (NPT) and without any real-time or memory data quality issues.


Author(s):  
Hayk Avetisyan ◽  
Artak Gnuni ◽  
Levon Mkrtchyan ◽  
Arsen Bobokhyan

The given contribution is devoted to the problem of computer modeling in archaeology. The territory of the Republic of Armenia is chosen as a target zone for investigations, which is considered in the context of historical and cultural developments of the neighboring countries. The chronological range of the given study is the Bronze and Iron Ages (3rd-1st millennia BC). Тhe principles of computer modeling are applicable to the investigation of monumental architecture (fortifications, towers, cairns, kites, kurgans, dolmens), aiming at reconstructing both the complexes of the monuments and the historical landscape.


2021 ◽  
Vol 11 (8) ◽  
pp. 817
Author(s):  
Juliana Habor ◽  
Maximilian Fischer ◽  
Kunihiko Tokunaga ◽  
Masashi Okamoto ◽  
Klaus Radermacher

Background Relevant criteria for total hip arthroplasty (THA) planning have been introduced in the literature which include the hip range of motion, bony coverage, anterior cup overhang, leg length discrepancy, edge loading risk, and wear. The optimal implant design and alignment depends on the patient’s anatomy and patient-specific functional parameters such as the pelvic tilt. The approaches proposed in literature often consider one or more criteria for THA planning. but to the best of our knowledge none of them follow an integrated approach including all criteria for the definition of a patient-specific combined target zone (PSCTZ). Questions/purposes (1) How can we calculate suitable THA implant and implantation parameters for a specific patient considering all relevant criteria? (2) Are the resulting target zones in the range of conventional safe zones? (3) Do patients who fulfil these combined criteria have a better outcome score? Methods A method is presented that calculates individual target zones based on the morphology, range of motion and load acting on the hip joint and merges them into the PSCTZ. In a retrospective analysis of 198 THA patients, it was calculated whether the patients were inside or outside the Lewinnek safe zone, Dorr combined anteversion range and PSCTZ. The postoperative Harris Hip Scores (HHS) between insiders and outsiders were compared. Results 11 patients were inside the PSCTZ. Patients inside and outside the PSCTZ showed no significant difference in the HHS. However, a significant higher HHS was observed for the insiders of two of the three sub-target zones incorporated in the PSCTZ. By combining the sub-target zones in the PSCTZ, all PSCTZ insiders except one had an HHS higher than 90. Conclusions The results might suggest that, for a prosthesis implanted in the PSCTZ a low outcome score of the patient is less likely than using the conventional safe zones by Lewinnek and Dorr. For future studies, a larger cohort of patients inside the PSCTZ is needed which can only be achieved if the cases are planned prospectively with the method introduced in this paper. Clinical Relevance The method presented in this paper could help the surgeon combining multiple different criteria during THA planning and find the suitable implant design and alignment for a specific patient.


2021 ◽  
Vol 11 (6) ◽  
pp. 549
Author(s):  
Felix Wunderlich ◽  
Maheen Azad ◽  
Ruben Westphal ◽  
Thomas Klonschinski ◽  
Patrick Belikan ◽  
...  

Neutral coronal leg alignment is known to be important for postoperative outcome in total knee arthroplasty (TKA). Customized individually made implants (CIM) instrumented with patient-specific cutting guides are an innovation aiming to increase the precision and reliability of implant positioning and reconstruction of leg alignment. We aimed to compare reconstruction of the hip–knee–ankle angle (HKA) of the novel CIM system iTotal™ CR G2 (ConforMIS Inc.) to a matched cohort of the off-the-shelf (OTS) knee replacement system Vanguard™ CR (Zimmer Biomet). Retrospective analysis of postoperative coronal full-leg weight-bearing radiographs of 562 TKA (283 CIM TKA, 279 OTS TKA) was conducted. Via a medical planning software, HKA and rotation of the leg were measured in postoperative radiographs. HKA was then adjusted for rotational error, and 180° ± 3° varus/valgus was defined as the target zone HKA. Corrected postoperative HKA in the CIM group was 179.0° ± 2.8° and 179.2° ± 3.1° in the OTS group (p = 0.34). The rate of outliers, outside of the ±3° target zone, was equal in both groups (32.9%). Our analysis showed that TKA using patient-specific cutting guides and implants and OTS TKA implanted with conventional instrumentation resulted in equally satisfying restoration of the coronal leg alignment with less scattering in the CIM group.


Geophysics ◽  
2021 ◽  
pp. 1-75
Author(s):  
Tariq Alkhalifah ◽  
Qiang Guo ◽  
Yuanyuan Li

Detection of the property changes in the reservoir during injection and production is important. However, the detection process is very challenging using surface seismic surveys because these property changes often induce subtle changes in the seismic signals. The quantitative evaluation of the subsurface property obtained by full waveform inversion (FWI) allows for better monitoring of these time-lapse changes. However, high-resolution inversion is usually accompanied with a large computational cost. Besides, the resolution of inversion is limited by the bandwidth and aperture of time-lapse seismic data. We apply a target-oriented strategy through seismic redatuming to reduce the computational cost by focusing our high-resolution delineation on a relatively small zone of interest. The redatuming technique generates time-lapse virtual data for the target-oriented inversion. Considering the injection and production wells are often present in the target zone, we can incorporate the well velocity information to the time-lapse inversion by using regularization to complement the resolution and illumination at the reservoir. We use a deep neural network (DNN) to learn the statistical relationship between the inverted model and the facies interpreted from well logs. The trained network is employed to map the property changes extracted from the wells to the target inversion domain. We then perform another time-lapse inversion, in which we fit the predicted data difference to the redatumed one from observation, as well as fit the model to the predicted velocity changes. The numerical results demonstrate that the proposed method is capable of inverting for the time-lapse property changes effectively in the target zone by incorporating the learned model information from well logs.


2021 ◽  
Vol 4 (1) ◽  
pp. 01-03
Author(s):  
Himmatrao Saluba Bawaskar

Hypothyroidism is a highly prevalent disorder and can substantially impact the well-being of an individual. Till date there is no single accurate optimal target zone for thyroid stimulating hormone concentration that exists in the context of replacement of thyroid hormone. Due to the gradually progressive nature and insidious onset of disease, it often remains unrecognized


2021 ◽  
Author(s):  
Anton Andreev ◽  
Michael Pitts ◽  
Andrew Hoover ◽  
Eyad Mohamed Elhassan ◽  
Felix Sebastian Bexkens ◽  
...  

Abstract Demonstrating a viable development for the Ekofisk reservoir directly above the producing Tor reservoir in the Halfdan Field (Danish North Sea) has historically been challenging. A recent well shows the value of cross-disciplinary collaboration and new technology to maximize recovery and mitigate reservoir and drilling risks. Specifically, 4D seismic was utilized when planning the well, while placement was optimized by using advanced geosteering tools. Well optimization was further enhanced by adopting novel completion and stimulation technologies. Pressure data and 4D seismic show that Tor and Ekofisk are in dynamic communication, but the degree of communication varies locally. The integration of 4D seismic with other disciplines’ input succeeded in optimizing the well placement and narrowed the significant pore pressure uncertainty along the 12,000-ft reservoir section. To maximize well length within the target zone and reduce the risk of being faulted out of the target reservoir deep resistivity was used to steer the well in the optimal layers. This contributed to 99% of the reservoir section being placed in the target zone. Lessons learnt from an earlier appraisal well and modest production experience in this part of the Ekofisk reservoir helped to justify the choice of selective completion zones (Sliding Side Door) in the inner part of the horizontal drain in order to minimize the impact of potential water or premature water breakthrough from high-rate injection wells located in the underlying Tor reservoir. This decision was validated after drilling the inner part of the well, where water-swept zones were encountered in the heel, followed by a long gas pay zone in line with 4D seismic signal in the remainder of the inner well section. To mitigate the risk of an unwanted fracture connection and increase contact with the tight oil-saturated reservoir, a novel stimulation and completion technology was successfully deployed in the outer 6-inch open-hole section of the well. The acid needles completion, deployed across a 3,000-ft reservoir interval and comprising 224 needles deployed by pumping acid, was the first installation of its kind in the Danish North Sea. For the acid needles completion, this installation holds two distinctions: the largest number of acid needles installed in a well, and the combination of the acid needles completion with a different completion system in a single lateral for the first time.


2021 ◽  
Vol 21 (84) ◽  
pp. e77-e79
Author(s):  
Gaurav Kant Sharma ◽  
◽  
Rajesh Botchu ◽  

Ultrasound-guided injection of the shoulder via the rotator interval can be challenging. The procedure is used for arthrograms, hydrodilatation and intra-articular glenohumeral joint injections. The conventional approach to the rotator interval is from lateral to medial. However, the placement of the needle in the target zone i.e. between the coracohumeral ligament and the long head of the biceps, can be difficult and challenging. Inadvertent injection performed with the needle in the long head of the biceps tendon can result in a biceps tendon rupture. We describe a new method (Gaurav-Botchu technique) to access the target zone (between the coracohumeral ligament and the long head of the biceps tendon) via a medial to lateral approach, which increases the target zone.


Sign in / Sign up

Export Citation Format

Share Document