Seismic inversion for organic richness and fracture gradient in unconventional reservoirs: Eagle Ford Shale, Texas

2015 ◽  
Vol 34 (1) ◽  
pp. 80-84 ◽  
Author(s):  
Robert Hu ◽  
Lev Vernik ◽  
Lev Nayvelt ◽  
Alfred Dicman
2015 ◽  
Author(s):  
Basel Alotaibi ◽  
David Schechter ◽  
Robert A. Wattenbarger

Abstract In previous works and published literature, production forecast and production decline of unconventional reservoirs were done on a single-well basis. The main objective of previous works was to estimate the ultimate recovery of wells or to forecast the decline of wells in order to estimate how many years a well could produce and what the abandonment rate was. Other studies targeted production data analysis to evaluate the completion (hydraulic fracturing) of shale wells. The purpose of this work is to generate field-wide production forecast of the Eagle Ford Shale (EFS). In this paper, we considered oil production of the EFS only. More than 6 thousand oil wells were put online in the EFS basin between 2008 and December 2013. The method started by generating type curves of producing wells to understand their performance. Based on the type curves, a program was prepared to forecast the oil production of EFS based on different drilling schedules; moreover drilling requirements can be calculated based on the desired production rate. In addition, analysis of daily production data from the basin was performed. Moreover, single-well simulations were done to compare results with the analyzed data. Findings of this study depended on the proposed drilling and developing scenario of EFS. The field showed potential of producing high oil production rate for a long period of time. The presented forecasted case gave and indications of the expected field-wide rate that can be witnessed in the near future in EFS. The method generated by this study is useful for predicting the performance of various unconventional reservoirs for both oil and gas. It can be used as a quick-look tool that can help if numerical reservoir simulations of the whole basin are not yet prepared. In conclusion, this tool can be used to prepare an optimized drilling schedule to reach the required rate of the whole basin.


2015 ◽  
Author(s):  
Mamadou Diakhate ◽  
Ayman Gazawi ◽  
Bob Barree ◽  
Manuel Cossio ◽  
Beau Tinnin ◽  
...  

Abstract This paper outlines a refrac pilot testing program conducted in the Eagle Ford Shale. As wells in the Eagle Ford accumulate production over time and the pressure around the horizontal wellbore declines, it is important to also consider communication due to offset fracture stimulation. Refracturing trials in older fields, such as the Barnett Shale have yielded a positive enhancement of well performance (Siebrits et al., 2000). This paper evaluates the concept of diverting fluid and proppant along horizontal wells in the Eagle Ford, while considering any communication with older producing wells during refracturing operations. Pumping data acquired during the refracturing is used to explain some of these concepts. Modeling of induced fracture geometry, considering the effect of current pore pressures, is conducted with a fully three-dimensional hydraulic fracture numerical simulator. The pressure of the subject zone may affect the containment and rate of growth of the new fractures, as well as the re-orientation of the existing fractures. Refracturing an old horizontal well with 5,000 ft lateral length and more than 800 existing perforation holes in the casing is very challenging and requires a careful integration of reservoir knowledge, completions skills and experience. The technical team at Pioneer Natural Resources has developed an integrated workflow to design and execute a refracturing job for an Eagle Ford well. The work flow includes: 1) identification of the lower pressure areas along the lateral using surveillance data from the well, such as microseismic, tracer logs, and production data. 2) identifying which wells within the drilling schedule are offsetting older wells that have high cumulative production, and 3) designing a single fracturing job with several sub-stages separated by diverting agents. Each sub-stage is intended to target specific areas along the lateral, which were previously identified as low pressure zones. Volumes and pump schedules will be specific for each candidate and are based on but not limited to proximity to an offset well, lateral length, and existence of geological structures such as faults and fractures in the area. The results from this pilot testing program such as the radioactive tracers and the fracture gradient changes before and after refrac will be evaluated upon completion of the field execution.


2015 ◽  
Vol 3 (3) ◽  
pp. SV69-SV78
Author(s):  
Bo Chen ◽  
Dhananjay Kumar ◽  
Anthony Uerling ◽  
Sheryl Land ◽  
Omar Aguirre ◽  
...  

We found a strong correlation between the estimated production volume and hydrocarbon resources in thicker and more porous intervals in the Eagle Ford Shale through integrated petrophysical and engineering analysis. The wells analyzed were selected with similar operational designs so that the rock properties were the main variables impacting the production volume. Seismic data were used to characterize such desired rock properties, including thickness and porosity, to evaluate the producing potentials across the field. Seismic interpretation provided the top and base of the Eagle Ford reservoir, and hence, its thickness. Seismic inversion calibrated the acoustic impedance. Also, the seismic net pay estimation method predicted the thickness of the more porous intervals. The calculated seismic net pay agreed with the well log data. As petrophysical analysis suggested, the seismic net pay also formed a strong correlation with the production volume and has been used to predict the producible resources for new wells, identify refract candidates, and evaluate completion trial methods in the Eagle Ford Shale.


2017 ◽  
Author(s):  
Nicholas J. Gianoutsos ◽  
◽  
Seth S. Haines ◽  
Brian Varela ◽  
Katherine Whidden

2020 ◽  
Author(s):  
Lawrence Anovitz ◽  
◽  
Hang Deng ◽  
Carl I. Steefel ◽  
Benjamin Gilbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document