Reviews

2020 ◽  
Vol 39 (6) ◽  
pp. 438-439
Author(s):  
Andreas Rüger ◽  
John Brittan ◽  
Robert Avakian

Deep learning for computer vision: Image classification, object detection, and face recognition in Python, by Jason Brownlee, 2020, Machine Learning Mastery, 563 p., US$0 (eBook). Illustrated Seismic Processing: Volume 1: Imaging, by Stephen J. Hill and Andreas Rüger, ISBN 978-1-560-80361-4, 2019, Society of Exploration Geophysicists, 330 p., US$39 (members), US$72 (nonmembers). Geology: A Very Short Introduction, by Jan Zalasiewicz, ISBN 978-0-198-80445-1, 2018, Oxford University Press, 168 p., US$11.95 (print).

2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Author(s):  
Евгений Васильев ◽  
Evgeniy Vasil'ev ◽  
Валентина Кустикова ◽  
Valentina Kustikova ◽  
Иван Вихрев ◽  
...  

We represent a case study of using deep learning and computer vision library - the Intel Distribution of OpenVINO toolkit. We develop the automated “smart library” using DL and computer vision methods implemented in OpenVINO toolkit. The application involves the registration of the reader (adding information and photos of the new user); updating the machine learning model that describes the face features of the library users; authorization of the reader through face recognition; receiving and returning books by comparing the cover image with the database of flat images available in the library of books. The source code of the application is free available on GitHub: https://github.com/itlab-vision/openvino-smart-library. The developed application is planned to be published as a sample of the OpenVINO toolkit.


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 300-306
Author(s):  
Muhamad Jaelani Akbar ◽  
Mochamad Wisuda Sardjono ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Sayuran merupakan sebutan bagi bahan pangan asal tumbuhan yang biasanya mengandung kadar air tinggi dan dikonsumsi dalam keadaan segar atau setelah diolah secara minimal. Keanekaragaman sayur yang terdapat di dunia menyebabkan keragaman pula dalam pengklasifikasian sayur. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali jenis sayuran dengan cepat dan mudah. Dalam penelitian ini jumlah jenis sayuran yang digunakan sebanyak 7 jenis diantara: brokoli, jagung, kacang panjang, pare, terung ungu, tomat dan kubis. Dataset yang digunakan berjumlah 941 gambar sayur dari 7 jenis sayur, ditambah 131 gambar sayur dari jenis yang tidak terdapat pada dataset, selain itu digunakan 291 gambar selain sayuran. Untuk melakukan klasifikasi jenis sayuran digunakan algoritme Convolutional Neural Network (CNN), yang merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan pesat. CNN merupakan salah satu algoritme yang terdapat pada metode Deep Learning dengan memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek citra. Uji coba dilakukan pada lima perangkat selular berbasiskan sistem operasi Android. Python digunakan sebagai bahasa pemrograman dalam merancang aplikasi mobile ini dengan menggunakan modul Tensor flow untuk melakukan training dan testing data. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Hasil final test accuracy yang diperoleh yaitu didapat keakuratan mengenali jenis sayuran sebesar 98.1% dengan salah satu hasil pengujian yaitu klasifikasi sayur jagung dengan akurasi sebesar 99.98049%.


Author(s):  
Anuraag Velamati Et.al

The world is quickly and continuously advancing towards better technological advancements that will make life quite easier for us, human beings [22]. Humans are looking for more interactive and advanced ways to improve their learning. One such dream is making a machine think like a computer, which lead to innovations like AI and deep learning [25]. The world is running at a higher pace in the domain of AI, deep learning, robotics and machine learning Using this knowledge and technology, we could develop anything right now [36]. As a part of sub-domain, the introduction of Convolution Neural Networks made deep learning extensively strong in the domain of image classification and detection [1]..The research that we have conducted is one of its kind. Our research used Convolution Neural Network, TensorFlow and Keras.


2021 ◽  
Vol 4 (2) ◽  
pp. 286-293
Author(s):  
Asrianda Asrianda ◽  
Hafizh Al Kautsar Aidilof ◽  
Yoga Pangestu

Artificial intelligence (AI) merupakan bidang ilmu pengetahuan yang saat ini menjadi isu yang menarik dan masih diteliti secara luas. Salah satu cabang dari pengembangan AI adalah computer vision yang di dalamnya terdapat topik pembahasan image classification dan object detection. Machine learning dapat dimanfaatkan di dalam bidang computer vision untuk melakukan object detection dan image classification, yaitu dengan menggunakan algoritma Convolutional Neural Network (CNN). CNN banyak digunakan pada penelitian terdahulu karena akurasinya yang tinggi. Pada penelitian ini, CNN digunakan untuk mendeteksi jenis penyakit daun tanaman kelapa sawit, dengan dataset sebanyak 60 gambar, dimana 50 diantaranya merupakan daun dengan 5 jenis penyakit berbeda, yaitu Curvularia sp, Cochliobolus carbonus, Capnodium sp, Drecshlera, dan defisiensi unsur hara. Sedangkan 10 sisanya merupakan gambar daun sehat. Hasilnya, CNN dapat mendeteksi penyakit daun kelapa sawit dengan akurasi yang dihasilkan mencapai 99%.


Sebatik ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Hanissa Anggraini Pratiwi ◽  
Margi Cahyanti ◽  
Missa Lamsani

Bunga atau kembang adalah alat reproduksi seksual pada tumbuhan berbunga. Pada bunga terdapat organ reproduksi, yaitu benang sari dan putik. Pada beberapa spesies, bunga majemuk dapat dianggap awam sebagai bunga (tunggal), ada sekitar 391.000 spesies tanaman vaskular yang saat ini diketahui sains, dimana sekitar 369.000 spesies (atau 94 persen) adalah tanaman berbunga. Klasifikasi jenis bunga merupakan pekerjaan yang membutuhkan waktu dan pengetahuan. Perkembangan visi komputer memungkinkan otomatisasi klasifikasi jenis bunga dengan efisien dan akurat. Deep Learning merupakan cabang ilmu machine learning berbasis Jaringan Saraf Tiruan (JST) atau bisa dikatakan sebagai perkembangan dari JST. Dalam Deep Learning, sebuah komputer belajar mengklasifikasi secara langsung dari gambar atau suara. Dengan menggunakan teknologi Deep Learning yang merupakan salah satu bidang ilmu baru dalam Machine learning dan berkembang dengan sangat pesat. Deep Learning memiliki kemampuan yang baik dalam Computer Vision, yaitu Image Classification atau kalsifikasi objek pada citra dalam bentuk dua dimensi misalnya gambar dan suara. Hasil final test accuracy yang diperoleh yaitu didapat keakuratan sebesar 100% dengan salah satu hasil pengujian yaitu klasifikasi bunga mawar  dengan akurasi sebesar 99,30%. Model data latih menggunakan dengan total dataset 460 gambar (yang diambil melalui pencarian gambar pada Google Image) sebanyak 30 kali dilatih, di mana setiap 13 langkah terhitung 1 training. Sehingga menghasilkan keluaran nilai akurasi dari data yang telah dilatih (val_acc) dan nilai akurasi dari data yang hilang atau miss (val_loss). Diharapkan dengan adanya implementasi aplikasi ini dapat membantu pengguna untuk memelihara bunga hias dengan jenis sesuai dengan keinginan.


2021 ◽  
pp. PP. 18-50
Author(s):  
Ahmed A. Elngar ◽  
◽  
◽  
◽  
◽  
...  

Computer vision is one of the fields of computer science that is one of the most powerful and persuasive types of artificial intelligence. It is similar to the human vision system, as it enables computers to recognize and process objects in pictures and videos in the same way as humans do. Computer vision technology has rapidly evolved in many fields and contributed to solving many problems, as computer vision contributed to self-driving cars, and cars were able to understand their surroundings. The cameras record video from different angles around the car, then a computer vision system gets images from the video, and then processes the images in real-time to find roadside ends, detect other cars, and read traffic lights, pedestrians, and objects. Computer vision also contributed to facial recognition; this technology enables computers to match images of people’s faces to their identities. which these algorithms detect facial features in images and then compare them with databases. Computer vision also play important role in Healthcare, in which algorithms can help automate tasks such as detecting Breast cancer, finding symptoms in x-ray, cancerous moles in skin images, and MRI scans. Computer vision also contributed to many fields such as image classification, object discovery, motion recognition, subject tracking, and medicine. The rapid development of artificial intelligence is making machine learning more important in his field of research. Use algorithms to find out every bit of data and predict the outcome. This has become an important key to unlocking the door to AI. If we had looked to deep learning concept, we find deep learning is a subset of machine learning, algorithms inspired by structure and function of the human brain called artificial neural networks, learn from large amounts of data. Deep learning algorithm perform a task repeatedly, each time tweak it a little to improve the outcome. So, the development of computer vision was due to deep learning. Now we'll take a tour around the convolution neural networks, let us say that convolutional neural networks are one of the most powerful supervised deep learning models (abbreviated as CNN or ConvNet). This name ;convolutional ; is a token from a mathematical linear operation between matrixes called convolution. CNN structure can be used in a variety of real-world problems including, computer vision, image recognition, natural language processing (NLP), anomaly detection, video analysis, drug discovery, recommender systems, health risk assessment, and time-series forecasting. If we look at convolutional neural networks, we see that CNN are similar to normal neural networks, the only difference between CNN and ANN is that CNNs are used in the field of pattern recognition within images mainly. This allows us to encode the features of an image into the structure, making the network more suitable for image-focused tasks, with reducing the parameters required to set-up the model. One of the advantages of CNN that it has an excellent performance in machine learning problems. So, we will use CNN as a classifier for image classification. So, the objective of this paper is that we will talk in detail about image classification in the following sections.


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
Author(s):  
M Ridwan Dwi Septian ◽  
Andi Asrafil Ardan Paliwang ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Tanaman Apel merupakan buah tahunan yang berasal dari daerah Asia Barat dengan iklim sub tropis. Di Indonesia tanaman Apel ditanam sejak tahun 1934 hingga saat ini. Tanaman Apel dapat tumbuh dan berbuah baik di daerah dataran tinggi. Para petani biasanya melakukan pencegahan penyakit atau hama dengan melakukan penyemprotan setiap 1 – 2 minggu sekali dengan dosis ringan. Pencegahan ini agar penyakit/hama dapat segera ditanggulangi dan baik jika dilakukan pada pagi atau sore hari. Terkadang petani juga membutuhkan seorang pakar dalam menentukan jenis hama/penyakit pada tanaman Apel agar dapet memberikan solusi terbaik. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali beragam jenis hama/penyakit tanaman Apel dengan cepat dan mudah. Teknologi Deep Learning, merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan depat. Deep Learning memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek pada citra. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Berdasarkan hasil uji coba, aplikasi berhasil diimplementasikan dengan baik menggunakan framework  dart berbasis android dengan hasil final test accuracy yang diperoleh yaitu didapat keakuratan sebesar 97,1%.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Sign in / Sign up

Export Citation Format

Share Document