Introduction to this special section: Seismic acquisition

2022 ◽  
Vol 41 (1) ◽  
pp. 8-8
Author(s):  
Keith Millis ◽  
Guillaume Richard ◽  
Chengbo Li

In the life cycle of a seismic product, the lion's share of the budget and personnel hours is spent on acquisition. In most modern seismic surveys, acquisition involves hundreds of specialized personnel working for months or years. Seismic acquisition also must overcome potential liabilities and health, safety, and environmental concerns that rival facility, pipeline, construction, and other operational risks. As only properly acquired data can contribute effectively to processing and interpretation strategies, a great deal of importance is placed on acquisition quality. Arguably, many of the advances the seismic industry has experienced find their origin arising from advances in acquisition techniques. Full-waveform inversion (FWI), for example, can reach its full potential only when seismic acquisition has provided both low frequencies and long offsets.

2020 ◽  
Vol 39 (4) ◽  
pp. 296-296
Author(s):  
Andrew Geary

The following is an excerpt from SEG's podcast, Seismic Soundoff. In this episode, host Andrew Geary previews Dave Monk's upcoming Distinguished Instructor Short Course and book titled, “Survey design and seismic acquisition for land, marine, and in-between in light of new technology and techniques.” In this engaging conversation, Dave and Andrew discuss how full-waveform inversion impacts survey design, the research breakthroughs needed for the next evolution of seismic surveys, and one group that may not realize that this course is for them. Listen to the full episode at https://seg.org/podcast/post/8946 .


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R989-R1001 ◽  
Author(s):  
Oleg Ovcharenko ◽  
Vladimir Kazei ◽  
Mahesh Kalita ◽  
Daniel Peter ◽  
Tariq Alkhalifah

Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R189-R198 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale ◽  
Bin Gong ◽  
Zhaobo (Joe) Meng

Multiple problems, including high computational cost, spurious local minima, and solutions with no geologic sense, have prevented widespread application of full waveform inversion (FWI), especially FWI of seismic reflections. These problems are fundamentally related to a large number of model parameters and to the absence of low frequencies in recorded seismograms. Instead of inverting for all the parameters in a dense model, image-guided full waveform inversion inverts for a sparse model space that contains far fewer parameters. We represent a model with a sparse set of values, and from these values, we use image-guided interpolation (IGI) and its adjoint operator to compute finely and uniformly sampled models that can fit recorded data in FWI. Because of this sparse representation, image-guided FWI updates more blocky models, and this blockiness in the model space mitigates the absence of low frequencies in recorded data. Moreover, IGI honors imaged structures, so image-guided FWI built in this way yields models that are geologically sensible.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


Geophysics ◽  
2021 ◽  
pp. 1-20
Author(s):  
Xin Zhang ◽  
Andrew Curtis

Seismic full-waveform inversion (FWI) uses full seismic records to estimate the subsurface velocity structure. This requires a highly nonlinear and nonunique inverse problem to be solved, so Bayesian methods have been used to quantify uncertainties in the solution. Variational Bayesian inference uses optimization to provide solutions efficiently. However, previously the method has only been applied to a transmission FWI problem, and with strong prior information imposed on the velocity such as is never available in practice. We show that the method works well in a seismic reflection setting, and with realistically weak prior information, representing the type of problem that occurs in reality. We conclude that the method can produce high-resolution images and reliable uncertainties using data from standard reflection seismic acquisition geometry, realistic nonlinearity, and practically achievable prior information.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R339-R348 ◽  
Author(s):  
Yunyue Elita Li ◽  
Laurent Demanet

The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extrapolated to a lower (or higher) frequency band from the nondispersive nature of the wave-propagation model. We have used the phase-tracking method for the event separation task. The fidelity of the resulting extrapolation method is typically higher in phase than in amplitude. To demonstrate the reliability of bandwidth extension in the context of FWI, we first used the low frequencies in the extrapolated band as data substitute, to create the low-wavenumber background velocity model, and then we switched to recorded data in the available band for the rest of the iterations. The resulting method, extrapolated FWI, demonstrated surprising robustness to the inaccuracies in the extrapolated low-frequency data. With two synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid local minima, we have determined that FWI based on an extrapolated [1, 5] Hz band, itself generated from data available in the [5, 15] Hz band, can produce reasonable estimations of the low-wavenumber velocity models.


Sign in / Sign up

Export Citation Format

Share Document