Image-guided sparse-model full waveform inversion

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R189-R198 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale ◽  
Bin Gong ◽  
Zhaobo (Joe) Meng

Multiple problems, including high computational cost, spurious local minima, and solutions with no geologic sense, have prevented widespread application of full waveform inversion (FWI), especially FWI of seismic reflections. These problems are fundamentally related to a large number of model parameters and to the absence of low frequencies in recorded seismograms. Instead of inverting for all the parameters in a dense model, image-guided full waveform inversion inverts for a sparse model space that contains far fewer parameters. We represent a model with a sparse set of values, and from these values, we use image-guided interpolation (IGI) and its adjoint operator to compute finely and uniformly sampled models that can fit recorded data in FWI. Because of this sparse representation, image-guided FWI updates more blocky models, and this blockiness in the model space mitigates the absence of low frequencies in recorded data. Moreover, IGI honors imaged structures, so image-guided FWI built in this way yields models that are geologically sensible.

Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. R77-R88 ◽  
Author(s):  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) suffers from the cycle-skipping problem when the available frequency-band of data is not low enough. We have applied an exponential damping to the data to generate artificial low frequencies, which helps FWI to avoid cycle skipping. In this case, the least-squares misfit function does not properly deal with the exponentially damped wavefield in FWI because the amplitude of traces decays almost exponentially with increasing offset in a damped wavefield. Thus, we use a deconvolution-based objective function for FWI of the exponentially damped wavefield. The deconvolution filter includes inherently a normalization between the modeled and observed data; thus, it can address the unbalanced amplitude of a damped wavefield. We specifically normalize the modeled data with the observed data in the frequency-domain to estimate the deconvolution filter and selectively choose a frequency-band for normalization that mainly includes the artificial low frequencies. We calculate the gradient of the objective function using the adjoint-state method. The synthetic and benchmark data examples indicate that our FWI algorithm generates a convergent long-wavelength structure without low-frequency information in the recorded data.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. R117-R127 ◽  
Author(s):  
Antoine Guitton ◽  
Gboyega Ayeni ◽  
Esteban Díaz

The waveform inversion problem is inherently ill-posed. Traditionally, regularization schemes are used to address this issue. For waveform inversion, where the model is expected to have many details reflecting the physical properties of the Earth, regularization and data fitting can work in opposite directions: the former smoothing and the latter adding details to the model. We propose constraining estimated velocity fields by reparameterizing the model. This technique, also called model-space preconditioning, is based on directional Laplacian filters: It preserves most of the details of the velocity model while smoothing the solution along known geological dips. Preconditioning also yields faster convergence at early iterations. The Laplacian filters have the property to smooth or kill local planar events according to a local dip field. By construction, these filters can be inverted and used in a preconditioned waveform inversion strategy to yield geologically meaningful models. We illustrate with 2D synthetic and field data examples how preconditioning with nonstationary directional Laplacian filters outperforms traditional waveform inversion when sparse data are inverted and when sharp velocity contrasts are present. Adding geological information with preconditioning could benefit full-waveform inversion of real data whenever irregular geometry, coherent noise and lack of low frequencies are present.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. R569-R582 ◽  
Author(s):  
Mahesh Kalita ◽  
Vladimir Kazei ◽  
Yunseok Choi ◽  
Tariq Alkhalifah

Full-waveform inversion (FWI) attempts to resolve an ill-posed nonlinear optimization problem to retrieve the unknown subsurface model parameters from seismic data. In general, FWI fails to obtain an adequate representation of models with large high-velocity structures over a wide region, such as salt bodies and the sediments beneath them, in the absence of low frequencies in the recorded seismic signal, due to nonlinearity and nonuniqueness. We alleviate the ill posedness of FWI associated with data sets affected by salt bodies using model regularization. We have split the optimization problem into two parts: First, we minimize the data misfit and the total variation in the model, seeking to achieve an inverted model with sharp interfaces; and second, we minimize sharp velocity drops with depth in the model. Unlike conventional industrial salt flooding, our technique requires minimal human intervention and no information about the top of the salt. Those features are demonstrated on data sets of the BP 2004 and Sigsbee2A models, synthesized from a Ricker wavelet of dominant frequency 5.5 Hz and minimum frequency 3 Hz. We initiate the inversion process with a simple model in which the velocity increases linearly with depth. The model is well-retrieved when the same constant density acoustic code is used to simulate the observed data, which is still one of the most common FWI tests. Moreover, our technique allows us to reconstruct a reasonable depiction of the salt structure from the data synthesized independently with the BP 2004 model with variable density. In the Sigsbee2A model, we manage to even capture some of the fine layering beneath the salt. In addition, we evaluate the versatility of our method on a field data set from the Gulf of Mexico.


Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. U25-U38 ◽  
Author(s):  
Nuno V. da Silva ◽  
Andrew Ratcliffe ◽  
Vetle Vinje ◽  
Graham Conroy

Parameterization lies at the center of anisotropic full-waveform inversion (FWI) with multiparameter updates. This is because FWI aims to update the long and short wavelengths of the perturbations. Thus, it is important that the parameterization accommodates this. Recently, there has been an intensive effort to determine the optimal parameterization, centering the fundamental discussion mainly on the analysis of radiation patterns for each one of these parameterizations, and aiming to determine which is best suited for multiparameter inversion. We have developed a new parameterization in the scope of FWI, based on the concept of kinematically equivalent media, as originally proposed in other areas of seismic data analysis. Our analysis is also based on radiation patterns, as well as the relation between the perturbation of this set of parameters and perturbation in traveltime. The radiation pattern reveals that this parameterization combines some of the characteristics of parameterizations with one velocity and two Thomsen’s parameters and parameterizations using two velocities and one Thomsen’s parameter. The study of perturbation of traveltime with perturbation of model parameters shows that the new parameterization is less ambiguous when relating these quantities in comparison with other more commonly used parameterizations. We have concluded that our new parameterization is well-suited for inverting diving waves, which are of paramount importance to carry out practical FWI successfully. We have demonstrated that the new parameterization produces good inversion results with synthetic and real data examples. In the latter case of the real data example from the Central North Sea, the inverted models show good agreement with the geologic structures, leading to an improvement of the seismic image and flatness of the common image gathers.


Geophysics ◽  
2021 ◽  
pp. 1-37
Author(s):  
Xinhai Hu ◽  
Wei Guoqi ◽  
Jianyong Song ◽  
Zhifang Yang ◽  
Minghui Lu ◽  
...  

Coupling factors of sources and receivers vary dramatically due to the strong heterogeneity of near surface, which are as important as the model parameters for the inversion success. We propose a full waveform inversion (FWI) scheme that corrects for variable coupling factors while updating the model parameter. A linear inversion is embedded into the scheme to estimate the source and receiver factors and compute the amplitude weights according to the acquisition geometry. After the weights are introduced in the objective function, the inversion falls into the category of separable nonlinear least-squares problems. Hence, we could use the variable projection technique widely used in source estimation problem to invert the model parameter without the knowledge of source and receiver factors. The efficacy of the inversion scheme is demonstrated with two synthetic examples and one real data test.


2010 ◽  
Author(s):  
Yong Ma ◽  
Dave Hale ◽  
Zhaobo (Joe) Meng ◽  
Bin Gong

Author(s):  
Linan Xu ◽  
Edgar Manukyan ◽  
Hansruedi Maurer

Summary Seismic Full Waveform Inversion (FWI) has the potential to produce high-resolution subsurface images, but the computational resources required for realistically sized problems can be prohibitively large. In terms of computational costs, Gauss-Newton algorithms are more attractive than the commonly employed conjugate gradient methods, because the former have favorable convergence properties. However, efficient implementations of Gauss-Newton algorithms require an excessive amount of computer memory for larger problems. To address this issue, we introduce Compact Full Waveform Inversion (CFWI). Here, a suitable inverse model parameterization is sought that allows representing all subsurface features, potentially resolvable by a particular source-receiver deployment, but using only a minimum number of model parameters. In principle, an inverse model parameterization, based on the Eigenvalue decomposition, would be optimal, but this is computationally not feasible for realistic problems. Instead, we present two alternative parameter transformations, namely the Haar and the Hartley transformations, with which similarly good results can be obtained. By means of a suite of numerical experiments, we demonstrate that these transformations allow the number of model parameters to be reduced to only a few percent of the original parameterization without any significant loss of spatial resolution. This facilitates efficient solutions of large-scale FWI problems with explicit Gauss-Newton algorithms.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R793-R804 ◽  
Author(s):  
Debanjan Datta ◽  
Mrinal K. Sen ◽  
Faqi Liu ◽  
Scott Morton

A good starting model is imperative in full-waveform inversion (FWI) because it solves a least-squares inversion problem using a local gradient-based optimization method. A suboptimal starting model can result in cycle skipping leading to poor convergence and incorrect estimation of subsurface properties. This problem is especially crucial for salt models because the strong velocity contrasts create substantial time shifts in the modeled seismogram. Incorrect estimation of salt bodies leads to velocity inaccuracies in the sediments because the least-squares gradient aims to reduce traveltime differences without considering the sharp velocity jump between sediments and salt. We have developed a technique to estimate velocity models containing salt bodies using a combination of global and local optimization techniques. To stabilize the global optimization algorithm and keep it computationally tractable, we reduce the number of model parameters by using sparse parameterization formulations. The sparse formulation represents sediments using a set of interfaces and velocities across them, whereas a set of ellipses represents the salt body. We use very fast simulated annealing (VFSA) to minimize the misfit between the observed and synthetic data and estimate an optimal model in the sparsely parameterized space. The VFSA inverted model is then used as a starting model in FWI in which the sediments and salt body are updated in the least-squares sense. We partition model updates into sediment and salt updates in which the sediments are updated like conventional FWI, whereas the shape of the salt is updated by taking the zero crossing of an evolving level set surface. Our algorithm is tested on two 2D synthetic salt models, namely, the Sigsbee 2A model and a modified SEG Advanced Modeling Program (SEAM) Phase I model while fixing the top of the salt. We determine the efficiency of the VFSA inversion and imaging improvements from the level set FWI approach and evaluate a few sources of uncertainty in the estimation of salt shapes.


Sign in / Sign up

Export Citation Format

Share Document