Analytical Fragility Functions for Horizontally Curved Steel I-Girder Highway Bridges

2015 ◽  
Vol 31 (4) ◽  
pp. 2235-2254 ◽  
Author(s):  
Ebrahim AmiriHormozaki ◽  
Gokhan Pekcan ◽  
Ahmad Itani

Horizontally curved bridges were investigated following a statistical evaluation of typical details commonly used in the United States. Both seismically and non-seismically designed bridges are considered where the primary differences are in column confinement, type of bearings and abutment support length. Columns and bearings were found to be the most seismically vulnerable components for both categories. Central angle was identified as an important factor that increases the demand on various components, particularly columns. Furthermore, larger angles lead to increased deformations at the supports which adversely affect the seismic vulnerability. Consistent with the fragility curves that account for the central angle explicitly, a second set of system fragility curves were introduced for cases when central angle is not specified such as the case in the National Bridge Inventory. Comparison of fragility parameters to those suggested by HAZUS-MH highlighted the need for revisions to account for current design practices and central angle.

2017 ◽  
Vol 24 (19) ◽  
pp. 4465-4483 ◽  
Author(s):  
Mohsen Amjadian ◽  
Anil K Agrawal

Horizontally curved bridges have complicated dynamic characteristics because of their irregular geometry and nonuniform mass and stiffness distributions. This paper aims to develop a simplified and practical method for the calculation of the natural frequencies and mode shapes of horizontally curved bridges that would be of interest to bridge engineers for the estimation of the seismic response of these types of bridges. For this purpose, a simple three-degree-of-freedom (3DOF) dynamic model for free vibration equation of this type of bridge has been developed. It is shown that the translational motion of the deck of horizontally curved bridges in the direction that is perpendicular to their axis of symmetry is always coupled with the rotational motion of the deck, regardless of the location of the stiffness center. The model is further exploited to develop closed-form formulas for the estimation of the maximum displacements of the corners of the deck of one-way asymmetric horizontally curved bridges. The accuracy of the model is verified by finite-element model of a horizontally curved bridge prototype in OpenSEES. Finally, the model is utilized to study the influence of the location of the stiffness center with respect to the deck curvature center on the natural frequency and the maximum displacements of the corners of the deck for different curvatures of the deck. The results of free vibration analysis show that the natural frequencies of one-way asymmetric horizontally curved bridges, in general, increase with the increase of the subtended angle of the deck. The results of earthquake response spectrum analysis show that the increase in the subtended angle of one-way asymmetric horizontally curved bridges decreases the radial displacements of the corners of the deck but increases the azimuthal displacement. These two responses both increase with the increase in the distance between the stiffness center and the curvature center.


2019 ◽  
pp. 15-1-15-16
Author(s):  
Ahmad M. Itani ◽  
Mark L. Reno

Author(s):  
Nina N. Serdar ◽  
Jelena R. Pejovic ◽  
Radenko Pejovic ◽  
Miloš Knežević

<p>It is of great importance that traffic network is still functioning in post- earthquake period, so that interventions in emergency situations are not delayed. Bridges are part of the traffic system that can be considered as critical for adequate post-earthquake response. Their seismic response often dominate the response and reliability of overall transportation system, so special attention should be given to risk assessment for these structures. In seismic vulnerability and risk assessment bridges are often classified as regular or irregular structures, dependant on their configuration. Curved bridges are considered as irregular and unexpected behaviour during seismic excitation is noticed in past earthquake events. Still there are an increasing number of these structures especially in densely populated urban areas since curved configuration is often suitable to accommodate complicated location conditions. In this paper special attention is given to seismic risk assessment of curved reinforce concrete bridges through fragility curves. Procedure for developing fragility curves is described as well as influence of radius curvature on their seismic vulnerability is investigated. Since vulnerability curves provide probability of exceedance of certain damage state, four damage states are considered: near collapse, significant damage, intermediate damage state, onset of damage and damage limitation. As much as possible these damage states are related to current European provisions. Radius of horizontal curvature is varied by changing subtended angle: 25 °, 45 ° and 90 °. Also one corresponding straight bridge is analysed. Nonlinear static procedure is used for developing of fragility curves. It was shown that probability of exceedance of certain damage states is increased as subtended angle is increased. Also it is determined that fragility of curved bridges can be related to fragility of straight counterparts what facilitates seismic evaluation of seismic vulnerability of curved bridges structures.</p>


2002 ◽  
Vol 18 (1) ◽  
pp. 121-142 ◽  
Author(s):  
Ayman A. Shama ◽  
John B. Mander ◽  
Blaise A. Blabac ◽  
Stuart S. Chen

The main objective of this study is to assess the seismic vulnerability of a class of highway bridges existing in certain regions of the eastern and central states, where steel H-piles extends out of the soil to support the pier cap. During severe ground motions, the overall performance of the bridge will be governed by the local performance of the pile-to-cap beam connection. The scope of work was divided into several tasks as follows: (1) a theory was developed to predict the performance of the connection under lateral loading; (2) an initial experimental program was conducted to investigate the seismic behavior of the steel bents; (3) a retrofit strategy is proposed; (4) a second experimental study was carried out to validate the proposed retrofit method; and (5) fragility curves for such structures were developed. This paper deals with the first two tasks of the study. The other three tasks are the subject of a second companion paper (Shama 2002).


2016 ◽  
Vol 4 (4) ◽  
pp. 1097-1111 ◽  
Author(s):  
A.A. Shittu ◽  
◽  
H.S. Lukman ◽  
O.S. Abejide. ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document