Alternative Models of Seismic Hazard Evaluation along the Jordan–Dead Sea Transform

2007 ◽  
Vol 23 (1) ◽  
pp. 1-19 ◽  
Author(s):  
Eid Al-Tarazi ◽  
Eric Sandvol

Three models were used to produce three probabilistic hazard maps for the Jordan–Dead Sea transform (DST). No seismic source zones were proposed. Models I and II are based on spatially smoothed historical and instrumentally recorded earthquakes. Model I used the data with magnitudes greater than 3.0 for the time period 1900 to 2003, while Model II used data with the magnitude range between 5.0 and 7.0 for the time period 2100 B.C. to A.D. 2003. Model III is the weighted model that is based on characteristic earthquakes that occurred along each major fault in the last ∼4,100 years. To assess the peak ground acceleration (PGA), three different attenuation equations were used. The resulting hazard maps represent 10% probability of being exceeded in 50 years, which corresponds to a return period of 475 years. The maximum PGA value was 350 cm/sec2 for the northernmost part of the DST, namely, between latitudes 35.5° and 36.5° N, and the southwestern part of Cyprus. In the regions of maximum expected ground motion, there is general agreement between the results of this study and those of previous studies that used the seismic source zones. However, peak ground accelerations predicted in this study are typically 10–20% less than those of previous studies. We believe this study represents an improvement on prior seismic hazard evaluations for the region. In addition to the updated input data, we believe that, by integrating three models, a more robust estimate of the hazard is provided.

2008 ◽  
Vol 8 (6) ◽  
pp. 1431-1439 ◽  
Author(s):  
G. Leydecker ◽  
H. Busche ◽  
K.-P. Bonjer ◽  
T. Schmitt ◽  
D. Kaiser ◽  
...  

Abstract. Since 2007 Bulgaria and Romania are members of the European Union. All member states have to introduce the European earthquake building code EUROCODE 8 (EC 8) in the coming years. Therefore, new seismic hazard maps have to be calculated according to the recommendations in EC 8. Here the authors present a novel approach to compute such hazard maps. We prefer to use the macroseismic intensity as hazard parameter because of two reasons: - The irregular azimuthal attenuation pattern of the Vrancea intermediate depth earthquakes can be advantageously taken into account by using detailed macroseismic maps. - The intensity is directly related to the degree of damage and is the original information in the historical earthquake catalogues. The main base of our probabilistic analysis is the earthquake catalogue for SE-Europe (Shebalin et al., 1998) in combination with national and regional catalogues. Fore- and aftershocks were removed. Seismic source zones inside an area of about 200 km around Romania and Bulgaria were defined based on seismicity, neotectonics and geological development. For each seismic source the intensity-frequency relation was calculated and a maximum possible earthquake as well as a seismogenic depth was estimated. An appropriate attenuation law was assumed. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes, a factor Ω was included in the macroseismic attenuation law. Using detailed macroseismic maps of three strong intermediate depth earthquakes, Ω was calculated for each observation. Strong local variations of Ω are avoided by averaging within grid cells of 0.5 degree in longitude and 0.25 degree in latitude. The contributions of all seismic sources, the crustal normal depth source zones and the Vrancea intermediate depth zone, were summed up and the annual probability of exceedance was calculated. The contribution of the Vrancea intermediate depth zone to each grid point was computed with the corresponding representative Ω of this point; a seismogenic depth of 120 km has been assumed. Each final seismic hazard map is a combination of two maps, the one for normal depth source zones and the one for the Vrancea intermediate depth zone. This is illustrated for a recurrence period of 475 years. Additional hazard maps were calculated for different recurrence periods.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
R. M. W. Musson

A set of seismic hazard maps, expressed as horizontal peak ground acceleration, have been computed for a large area of Central and Eastern Europe covering the North Balkan area (Former Yugoslavia, Hungary, Romania). These are based on: a) a compound earthquake catalogue for the region; b) a seismic source model of 50 zones compiled on the basis of tectonic divisions and seismicity, and c) a probabilistic methodology using stochastic (Monte Carlo) modelling. It is found that the highest hazard in the region comes from intermediate focus earthquakes occurring in the Vrancea seismic zone; here the hazard exceeds 0.4 g at return periods of 475 years. Special account has been taken of the directional nature of attenuation from this source.


2015 ◽  
Vol 2 (2) ◽  
Author(s):  
Myo Thant ◽  
Subagyo Pramumijoyo ◽  
Heru Hendrayana ◽  
Hiroshi Kawase ◽  
Agus Darmawan Adi

The probabilistic seismic hazard maps are developed for Yogyakarta depression area. The earthquake catalog of ANSS (1970-2007) is taken into account with the complement of NEIC (USGS, 1973-2007) and the records of BMG (2000-2004). On the basis of seismicity of the area, tectonics and geological information, the seismic source zones are characterized for this area. The seismicity parameters of each seismic source are determined by applying the classical Gutenberg-Richter recurrence model, regarding the historical records. The attenuation relation for Yogyakarta depression area cannot be evaluated since the sufficient strong ground motion records are not available for this region. Therefore the attenuation relations which were developed for other territories as Europe and Japan are used for the present hazard calculation by validating, using the aftershocks records, modeling the peak ground acceleration maps for the recent event, 27 May, 2006, Yogyakarta earthquake inserting the damage area distribution pattern. The probabilistic seismic hazard maps are finally developed by using the McGuire (1976) EQRISK computer program by modifying for the present purpose. The seismic hazard maps expressed in term of peak ground acceleration are developed for the recurrence intervals of 10, 50, 100, 200 and 500 years


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
B. Tavakoli ◽  
M. Ghafory-Ashtiany

The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA) for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.


2020 ◽  
Vol 20 (6) ◽  
pp. 1639-1661
Author(s):  
Khalid Mahmood ◽  
Naveed Ahmad ◽  
Usman Khan ◽  
Qaiser Iqbal

Abstract. Probabilistic seismic hazard analysis of Peshawar District has been performed for a grid size of 0.01∘. The seismic sources for the target location are defined as the area polygon with uniform seismicity. The earthquake catalogue was developed based on the earthquake data obtained from different worldwide seismological networks and historical records. The earthquake events obtained at different magnitude scales were converted into moment magnitude using indigenous catalogue-specific regression relationships. The homogenized catalogue was subdivided into shallow crustal and deep-subduction-zone earthquake events. The seismic source parameters were obtained using the bounded Gutenberg–Richter recurrence law. Seismic hazard maps were prepared for peak horizontal acceleration at bedrock level using different ground motion attenuation relationships. The study revealed the selection of an appropriate ground motion prediction equation is crucial for defining the seismic hazard of Peshawar District. The inclusion of deep subduction earthquakes does not add significantly to the seismic hazard for design base ground motions. The seismic hazard map developed for shallow crustal earthquakes, including also the epistemic uncertainty, was in close agreement with the map given in the Building Code of Pakistan Seismic Provisions (2007) for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years, are also presented.


2019 ◽  
Author(s):  
Khalid Mahmood ◽  
Usman Khan ◽  
Qaiser Iqbal ◽  
Naveed Ahmad

Abstract. The probabilistic seismic hazard analysis of Peshawar District has been conducted in for a grid size of 0.01. The seismic sources for the target location are defined as the area polygon with uniform seismicity for which, the earthquake catalogues were obtained from different worldwide seismological network data. The earthquake catalogues obtained in different magnitude scale was converted into moment magnitude using regression analysis. The homogenized catalogue was then further subdivided into shallow crustal and deep subduction zone earthquake events for which, the seismic source parameters were obtained using Bounded Gutenberg-Richter Recurrence law. The seismic hazard maps were prepared in term of PGA at bedrock using the different ground motion attenuation relationships. The study shows that; the selection of appropriate ground motion prediction equation is an important factor in deciding the seismic hazard of Peshawar District. The inclusion of deep subduction earthquake does not add significantly to the seismic hazard. The calculated seismic hazard map for shallow crustal earthquake after including the epistemic uncertainty was in close agreement to that developed by BCP-2007 for a return period of 475 years on bedrock. The seismic hazard maps for other return periods i.e., 50, 100, 250, 475 and 2500 years were then prepared.


2021 ◽  
Author(s):  
Abd el-aziz Khairy Abd el-aal ◽  
Shaimaa Ismail Mostafa ◽  
Abdullah Al-Enezi ◽  
Farah Al-Jeri ◽  
Ammar Al-Sayegh

Abstract The valuable results from this research are the first and essential step for assessing seismic risk in Kuwait. The increase in the urban development and construction of tall buildings and skyscrapers in Kuwait necessitated an estimate of the seismic risk for creating a unified seismic code for Kuwait. This research comes to make the necessarily step by assessing the seismic hazard and deaggregation in the State of Kuwait. For this purpose, the historical and instrumental seismic catalogs of Kuwait and the active Zagros Seismic Belt were primarily compiled, unifying the magnitudes, removing unnecessary earthquakes (seismicity declustering) and considering the completeness of the catalogs. Multi-seismotectonic models for Kuwait region incorporate earthquake focal mechanisms, seismicity pattern, and structural geological situation have been created to reduce epistemic uncertainty. The recurrence parameters as well as the maximum expected earthquake from each seismic source were fundamentally estimated. Appropriate ground motion attenuation relation within a logic tree formulation was mainly used in creating hazard maps. A state-of-the-art probabilistic approach is used herein to produce hazard maps at return periods of 75, 475, 975 and 2475 years (equivalent to 50%, 10%, 5% and 2%, respectively, probability of exceedance in 50 years) at periods of PGA, 0.1, 1 and 4 seconds. The computations of hazard maps were constructed using spacing grid of 0.2° × 0.2° all over the Kuwait area. Uniform hazard spectrum and deaggregation charts have been adopted for all six governorates of Kuwait. These results with vulnerability index are the main components for estimating the seismic risk of Kuwait.


Sign in / Sign up

Export Citation Format

Share Document