Faculty Opinions recommendation of The zinc finger transcription factors Osr1 and Osr2 control synovial joint formation.

Author(s):  
Linda Sandell ◽  
Audrey McAlinden
2011 ◽  
Vol 352 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Yang Gao ◽  
Yu Lan ◽  
Han Liu ◽  
Rulang Jiang

2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2006 ◽  
Vol 339 (1) ◽  
pp. 263-270 ◽  
Author(s):  
Leon W. Neuteboom ◽  
Beatrice I. Lindhout ◽  
Ingrid L. Saman ◽  
Paul J.J. Hooykaas ◽  
Bert J. van der Zaal

2007 ◽  
Vol 1116 (1) ◽  
pp. 100-112 ◽  
Author(s):  
E. KOYAMA ◽  
T. OCHIAI ◽  
R. B. ROUNTREE ◽  
D. M. KINGSLEY ◽  
M. ENOMOTO-IWAMOTO ◽  
...  

2005 ◽  
Vol 386 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Alexander E.F. Smith ◽  
Farzin Farzaneh ◽  
Kevin G. Ford

AbstractIn order to demonstrate that an existing zinc-finger protein can be simply modified to enhance DNA binding and sequence discrimination in both episomal and chromatin contexts using existing zinc-finger DNA recognition code data, and without recourse to phage display and selection strategies, we have examined the consequences of a single zinc-finger extension to a synthetic three-zinc-finger VP16 fusion protein, on transcriptional activation from model target promoters harbouring the zinc-finger binding sequences. We report a nearly 10-fold enhanced transcriptional activation by the four-zinc-finger VP16 fusion protein relative to the progenitor three-finger VP16 protein in transient assays and a greater than five-fold enhancement in stable reporter-gene expression assays. A marked decrease in transcriptional activation was evident for the four-zinc-finger derivative from mutated regulatory regions compared to the progenitor protein, as a result of recognition site-size extension. This discriminatory effect was shown to be protein concentration-dependent. These observations suggest that four-zinc-finger proteins are stable functional motifs that can be a significant improvement over the progenitor three-zinc-finger protein, both in terms of specificity and the ability to target transcriptional function to promoters, and that single zinc-finger extension can therefore have a significant impact on DNA zinc-finger protein interactions. This is a simple route for modifying or enhancing the binding properties of existing synthetic zinc-finger-based transcription factors and may be particularly suited for the modification of endogenous zinc-finger transcription factors for promoter biasing applications.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


Sign in / Sign up

Export Citation Format

Share Document