Fluorescent Probes for Chemical Transformations on the Single-Molecule Level

2008 ◽  
Vol 1130 (1) ◽  
pp. 131-137 ◽  
Author(s):  
Gregor Jung ◽  
Alexander Schmitt ◽  
Michaela Jacob ◽  
Babette Hinkeldey
2019 ◽  
Author(s):  
Esther Braselmann ◽  
Timothy J. Stasevich ◽  
Kenneth Lyon ◽  
Robert T. Batey ◽  
Amy E. Palmer

AbstractLabeling and tracking biomolecules with fluorescent probes on the single molecule level enables quantitative insights into their dynamics in living cells. We previously developed Riboglow, a platform to label RNAs in live mammalian cells, consisting of a short RNA tag and a small organic probe that increases fluorescence upon binding RNA. Here, we demonstrate that Riboglow is capable of detecting and tracking single RNA molecules. We benchmark RNA tracking by comparing results with the established MS2 RNA tagging system. To demonstrate versatility of Riboglow, we assay translation on the single molecule level, where the translated mRNA is tagged with Riboglow and the nascent polypeptide is labeled with a fluorescent antibody. The growing effort to investigate RNA biology on the single molecule level requires sophisticated and diverse fluorescent probes for multiplexed, multi-color labeling of biomolecules of interest, and we present Riboglow as a new member in this toolbox.


2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

Biochemistry ◽  
2021 ◽  
Vol 60 (7) ◽  
pp. 494-499
Author(s):  
Ke Lu ◽  
Cuifang Liu ◽  
Yinuo Liu ◽  
Anfeng Luo ◽  
Jun Chen ◽  
...  

2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2021 ◽  
Vol 13 (12) ◽  
pp. 14458-14469
Author(s):  
Aleksey A. Nikitin ◽  
Anton Yu Yurenya ◽  
Timofei S. Zatsepin ◽  
Ilya O. Aparin ◽  
Vladimir P. Chekhonin ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.


Sign in / Sign up

Export Citation Format

Share Document