scholarly journals Customizable Natural Language Processing Biomarker Extraction Tool

2021 ◽  
pp. 833-841
Author(s):  
Benjamin Holmes ◽  
Dhananjay Chitale ◽  
Joshua Loving ◽  
Mary Tran ◽  
Vinod Subramanian ◽  
...  

PURPOSE Natural language processing (NLP) in pathology reports to extract biomarker information is an ongoing area of research. MetaMap is a natural language processing tool developed and funded by the National Library of Medicine to map biomedical text to the Unified Medical Language System Metathesaurus by applying specific tags to clinically relevant terms. Although results are useful without additional postprocessing, these tags lack important contextual information. METHODS Our novel method takes terminology-driven semantic tags and incorporates those into a semantic frame that is task-specific to add necessary context to MetaMap. We use important contextual information to capture biomarker results to support Community Health System's use of Precision Medicine treatments for patients with cancer. For each biomarker, the name, type, numeric quantifiers, non-numeric qualifiers, and the time frame are extracted. These fields then associate biomarkers with their context in the pathology report such as test type, probe intensity, copy-number changes, and even failed results. A selection of 6,713 relevant reports contained the following standard-of-care biomarkers for metastatic breast cancer: breast cancer gene 1 and 2, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and programmed death-ligand 1. RESULTS The method was tested on pathology reports from the internal pathology laboratory at Henry Ford Health System. A certified tumor registrar reviewed 400 tests, which showed > 95% accuracy for all extracted biomarker types. CONCLUSION Using this new method, it is possible to extract high-quality, contextual biomarker information, and this represents a significant advance in biomarker extraction.

2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2020 ◽  
Author(s):  
Carlos R Oliveira ◽  
Patrick Niccolai ◽  
Anette Michelle Ortiz ◽  
Sangini S Sheth ◽  
Eugene D Shapiro ◽  
...  

BACKGROUND Accurate identification of new diagnoses of human papillomavirus–associated cancers and precancers is an important step toward the development of strategies that optimize the use of human papillomavirus vaccines. The diagnosis of human papillomavirus cancers hinges on a histopathologic report, which is typically stored in electronic medical records as free-form, or unstructured, narrative text. Previous efforts to perform surveillance for human papillomavirus cancers have relied on the manual review of pathology reports to extract diagnostic information, a process that is both labor- and resource-intensive. Natural language processing can be used to automate the structuring and extraction of clinical data from unstructured narrative text in medical records and may provide a practical and effective method for identifying patients with vaccine-preventable human papillomavirus disease for surveillance and research. OBJECTIVE This study's objective was to develop and assess the accuracy of a natural language processing algorithm for the identification of individuals with cancer or precancer of the cervix and anus. METHODS A pipeline-based natural language processing algorithm was developed, which incorporated machine learning and rule-based methods to extract diagnostic elements from the narrative pathology reports. To test the algorithm’s classification accuracy, we used a split-validation study design. Full-length cervical and anal pathology reports were randomly selected from 4 clinical pathology laboratories. Two study team members, blinded to the classifications produced by the natural language processing algorithm, manually and independently reviewed all reports and classified them at the document level according to 2 domains (diagnosis and human papillomavirus testing results). Using the manual review as the gold standard, the algorithm’s performance was evaluated using standard measurements of accuracy, recall, precision, and F-measure. RESULTS The natural language processing algorithm’s performance was validated on 949 pathology reports. The algorithm demonstrated accurate identification of abnormal cytology, histology, and positive human papillomavirus tests with accuracies greater than 0.91. Precision was lowest for anal histology reports (0.87, 95% CI 0.59-0.98) and highest for cervical cytology (0.98, 95% CI 0.95-0.99). The natural language processing algorithm missed 2 out of the 15 abnormal anal histology reports, which led to a relatively low recall (0.68, 95% CI 0.43-0.87). CONCLUSIONS This study outlines the development and validation of a freely available and easily implementable natural language processing algorithm that can automate the extraction and classification of clinical data from cervical and anal cytology and histology.


2012 ◽  
Vol 3 (1) ◽  
pp. 23 ◽  
Author(s):  
KevinS Hughes ◽  
JullietteM Buckley ◽  
SuzanneB Coopey ◽  
John Sharko ◽  
Fernanda Polubriaginof ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document