Plasma concentrations and pharmacokinetics of dimethylsulfoxide and its metabolites in patients undergoing peripheral-blood stem-cell transplants.

1998 ◽  
Vol 16 (2) ◽  
pp. 610-615 ◽  
Author(s):  
M J Egorin ◽  
D M Rosen ◽  
R Sridhara ◽  
L Sensenbrenner ◽  
M Cottler-Fox

PURPOSE Dimethylsulfoxide (DMSO) is used to cryopreserve hematopoietic stem cells and is obligatorily infused into patients who receive stem-cell transplants. This study characterized the plasma concentrations and pharmacokinetics of DMSO and its metabolites in patients who underwent peripheral-blood stem-cell transplants. MATERIALS AND METHODS Plasma concentrations of DMSO, dimethylsulfone (DMSO2), and dimethylsulfide (DMSH2) were assessed in 10 patients who underwent autologous transplants with stem cells, cryopreserved in 10% DMSO (vol/vol). Blood was sampled at multiple times after the stem-cell infusion. Urine was pooled during the 24 hours postinfusion. DMSO, DMSO2, and DMSH2 were assayed simultaneously by gas chromatography. A one-compartment model with saturable elimination proved most suitable for fitting plasma DMSO concentration-versus-time data. RESULTS Stem-cell volumes infused ranged between 180 and 585 mL (254 to 824 mmol DMSO). Infusions lasted between 20 and 120 minutes. Peak plasma DMSO concentrations were 19.1 +/- 6.3 mmol/L (mean +/- SD). Pharmacokinetic parameters for volume of the central compartment (Vc), maximum velocity (Vmax), and Michaels-Menten constant (Km) were 37.3 +/- 17 L, 0.99 +/- 0.57 mmol/L/h, and 5.2 +/- 5.0 mmol/L, respectively. Plasma DMSO2 concentrations increased during the first 24 hours, plateaued at 4.4 +/- 1.2 mmol/L, and remained there until 48 hours (the last sample). DMSH2 concentrations were at steady-state by 5 minutes and remained between 3 and 5 mmol/L for 48 hours. Urinary excretion of DMSO and DMSO2 accounted for 44% +/- 4% and 4% +/- 1%, respectively, of the administered DMSO dose. Renal clearance of DMSO was 14.1 +/- 3.4 mL/min. CONCLUSION These data (1) document plasma concentrations of DMSO and metabolites in patients following peripheral-blood stem-cell transplants; (2) allow consideration of potential effects of these concentrations on stem-cell engraftment and drug-drug interactions; and (3) can facilitate a concentration-guided phase I trial of DMSO.

2001 ◽  
Vol 40 (06) ◽  
pp. 215-220 ◽  
Author(s):  
S. Bielack ◽  
S. Flege ◽  
J. Eckardt ◽  
J. Sciuk ◽  
H. Jürgens ◽  
...  

Summary Purpose: Despite highly efficacious chemotherapy, patients with osteosarcomas still have a poor prognosis if adequate surgical control cannot be obtained. These patients may benefit from therapy with radiolabeled phosphonates. Patients and Methods: Six patients (three male, three female; seven to 41 years) with unresectable primary osteosarcoma (n = 3) or unresectable recurrent sites of osteosarcomas (n = 3) were treated with high-activity of Sm-153-EDTMP (150 MBq/kg BW). In all patients autologous peripheral blood stem cells had been collected before Sm-153-EDTMP therapy. Results: No immediate adverse reactions were observed in the patients. In one patient bone pain increased during the first 48 hrs after therapy. Three patients received pain relief. Autologous peripheral blood stem cell reinfusion was performed on day +12 to +27 in all patients to overcome potentially irreversible damage to the hematopoietic stem cells. In three patient external radiotherapy of the primary tumor site was performed after Sm-153-EDTMP therapy and in two of them polychemotherapy was continued. Thirty-six months later one of these patients is still free of progression. Two further patients are still alive. However, they have developed new metastases. The three patients who had no accompanying external radiotherapy, all died of disease progression five to 20 months after therapy. Conclusion: These preliminary results show that high-dose Sm-153-EDTMP therapy is feasible and warrants further evaluation of efficacy. The combination with external radiation and polychemotherapy seems to be most promising. Although osteosarcoma is believed to be relatively radioresistant, the total focal dose achieved may delay local progression or even achieve permanent local tumor control in patients with surgically inaccessible primary or relapsing tumors.


2013 ◽  
Vol 99 (2) ◽  
pp. 526-532.e2 ◽  
Author(s):  
Erin F. Wolff ◽  
Naoya Uchida ◽  
Robert E. Donahue ◽  
Mark E. Metzger ◽  
Matthew M. Hsieh ◽  
...  

1999 ◽  
Vol 23 (4) ◽  
pp. 335-346 ◽  
Author(s):  
S Shenoy ◽  
T Mohanakumar ◽  
G Todd ◽  
W Westhoff ◽  
K Dunnigan ◽  
...  

2001 ◽  
Vol 27 (2) ◽  
pp. 201-205 ◽  
Author(s):  
G Aksu ◽  
MZ Ruhi ◽  
H Akan ◽  
S Bengisun ◽  
C Üstün ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document