Human selenium binding protein-1 (hSP56) inhibits anchorage-independent growth of PC-3 human prostate cancer cells and is down-regulated in primary human prostate tumor cells

2005 ◽  
Vol 23 (16_suppl) ◽  
pp. 9564-9564 ◽  
Author(s):  
A. J. Sytkowski ◽  
C. Gao ◽  
L. Feldman ◽  
C. Chen
2021 ◽  
Vol 10 ◽  
Author(s):  
Ivy Chung ◽  
Kun Zhou ◽  
Courtney Barrows ◽  
Jacqueline Banyard ◽  
Arianne Wilson ◽  
...  

In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients’ prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases – two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.


2008 ◽  
Vol 26 (8) ◽  
pp. 800-808 ◽  
Author(s):  
Bruna Scaggiante ◽  
Serena Bonin ◽  
Luigi Cristiano ◽  
Salvatore Siracusano ◽  
Giorgio Stanta ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1366-1376 ◽  
Author(s):  
Matias Julian Stagno ◽  
Nefeli Zacharopoulou ◽  
Jonas Bochem ◽  
Anna Tsapara ◽  
Lisann Pelzl ◽  
...  

Background/Aims: Istaroxime is a validated inotropic Na+/K+ ATPase inhibitor currently in development for the treatment of various cardiac conditions. Recent findings established that this steroidal drug exhibits potent apoptotic responses in prostate tumors in vitro and in vivo, by affecting key signaling orchestrating proliferation and apoptosis, such as c-Myc and caspase 3, Rho GTPases and actin cytoskeleton dynamics. In the present study we examined whether istaroxime is affecting cell motility and analyzed the underlying mechanism in prostate tumor cells. Methods: Migration was assessed by transwell and wound healing assays, Orai1 and Stim1 abundance by RT-PCR and confocal immunofluorescence microscopy, Fura-2 fluorescence was utilized to determine intracellular Ca2+ and Western blotting for FAK/pFAK measurements. Results: We observed strong inhibition of cell migration in istaroxime treated DU-145 prostate cancer cells. Istaroxime further decreased Orai1 and Stim1 transcript levels and downregulated Orai1 protein expression. Moreover, SOCE was significantly decreased upon istaroxime treatment. Furthermore, istaroxime strikingly diminished phosphorylated FAK levels. Interestingly, the efficacy of istaroxime on the inhibition of DU-145 cell migration was further enhanced by blocking Orai1 with 2-APB and FAK with the specific inhibitor PF-00562271. These results provide strong evidence that istaroxime prevents cell migration and motility of DU-145 prostate tumor cells, an effect at least partially attributed to Orai1 downregulation and FAK de-activation. Conclusion: Collectively our results indicate that this enzyme inhibitor, besides its pro-apoptotic action, affects motility of cancer cells, supporting its potential role as a strong candidate for further clinical cancer drug development.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Martha E. Cancino-Marentes ◽  
Georgina Hernández-Flores ◽  
Pablo Cesar Ortiz-Lazareno ◽  
María Martha Villaseñor-García ◽  
Eduardo Orozco-Alonso ◽  
...  

Abstract Background Prostate cancer is one of the most frequently diagnosed types of cancers worldwide. In its initial period, the tumor is hormone-sensitive, but in advanced states, it evolves into a metastatic castration-resistant tumor. In this state, chemotherapy with taxanes such as Docetaxel (DTX) comprises the first line of treatment. However, the response is poor due to chemoresistance and toxicity. On the other hand, Pentoxifylline (PTX) is an unspecific inhibitor of phosphodiesterases; experimental, and clinically it has been described as sensitizing tumor cells to chemotherapy, increasing apoptosis and decreasing senescence. We study whether the PTX sensitizes prostate cancer cells to DTX for greater effectiveness. Methods PC3 human prostate cancer cells were treated in vitro at different doses and times with PTX, DTX, or their combination. Viability was determined by the WST-1 assay by spectrophotometry, cell cycle progression, apoptosis, generic caspase activation and senescence by flow cytometry, DNA fragmentation and caspases-3, -8, and -9 activity by ELISA. Results We found that PTX in PC3 human prostate cancer cells induces significant apoptosis per se and increases that generated by DTX, while at the same time it reduces the senescence caused by the chemotherapy and increases caspases-3,-8, and -9 activity in PTX + DTX-treated cells. Both treatments blocked the PC3 cell in the G1 phase. Conclusions Our results show that PTX sensitizes prostate tumor cells to apoptosis induced by DTX. Taken together, the results support the concept of chemotherapy with rational molecular bases.


2016 ◽  
Author(s):  
Terese Karlsson ◽  
Reshma Sundar ◽  
Anders Widmark ◽  
Marene Landstrom ◽  
Emma Persson

Sign in / Sign up

Export Citation Format

Share Document