Outcome Prediction in Pediatric Medulloblastoma Based on DNA Copy-Number Aberrations of Chromosomes 6q and 17q and the MYC and MYCN Loci

2009 ◽  
Vol 27 (10) ◽  
pp. 1627-1636 ◽  
Author(s):  
Stefan Pfister ◽  
Marc Remke ◽  
Axel Benner ◽  
Frank Mendrzyk ◽  
Grischa Toedt ◽  
...  

Purpose Medulloblastoma is the most common malignant brain tumor in children. Current treatment decisions are based on clinical variables. Novel tumor-derived biomarkers may improve the risk stratification of medulloblastoma patients. Patients and Methods A model for the molecular risk stratification was proposed from an array-based comparative genomic hybridization (array-CGH) screen (n = 80). Fluorescence in situ hybridization (FISH) analyses for chromosome arms 6q, 17p, and 17q and the MYC and MYCN loci were performed in an independent validation set (n = 260). Copy number aberrations were correlated with clinical, histologic, and survival data. Results Gain of 6q and 17q and genomic amplification of MYC or MYCN were each associated with poor outcome in the array-CGH study (n = 80). In contrast, all patients with 6q-deleted tumors survived. Given these findings, the following hierarchical molecular staging system was defined: (1) MYC/MYCN amplification, (2) 6q gain, (3) 17q gain, (4) 6q and 17q balanced, and (5) 6q deletion. The prognostic value of this staging system was investigated by FISH analysis (n = 260). The addition of molecular markers to clinical risk factors resulted in the identification of a large proportion of patients (72 of 260 patients; 30%) at high risk for relapse and death who would be considered standard risk by application of clinical variables alone. Conclusion Genomic aberrations in medulloblastoma are powerful independent markers of disease progression and survival. By adding genomic markers to established clinical and histologic variables, outcome prediction can be substantially improved. Because the analyses can be conducted on routine paraffin-embedded material, it will be especially feasible to use this novel molecular staging system in large multicenter clinical trials.

2010 ◽  
Vol 28 (19) ◽  
pp. 3182-3190 ◽  
Author(s):  
Andrey Korshunov ◽  
Hendrik Witt ◽  
Thomas Hielscher ◽  
Axel Benner ◽  
Marc Remke ◽  
...  

Purpose The biologic behavior of intracranial ependymoma is unpredictable on the basis of current staging approaches. We aimed at the identification of recurrent genetic aberrations in ependymoma and evaluated their prognostic significance to develop a molecular staging system that could complement current classification criteria. Patients and Methods As a screening cohort, we studied a cohort of 122 patients with ependymoma before standardized therapy by using array-based comparative genomic hybridization. DNA copy-number aberrations identified as possible prognostic markers were validated in an independent cohort of 170 patients with ependymoma by fluorescence in situ hybridization analysis. Copy-number aberrations were correlated with clinical, histopathologic, and survival data. Results In the screening cohort, age at diagnosis, gain of 1q, and homozygous deletion of CDKN2A comprised the most powerful independent indicators of unfavorable prognosis. In contrast, gains of chromosomes 9, 15q, and 18 and loss of chromosome 6 were associated with excellent survival. On the basis of these findings, we developed a molecular staging system comprised of three genetic risk groups, which was then confirmed in the validation cohort. Likelihood ratio tests and multivariate Cox regression also demonstrated the clear improvement in predictive accuracy after the addition of these novel genetic markers. Conclusion Genomic aberrations in ependymomas are powerful independent markers of disease progression and survival. By adding genetic markers to established clinical and histopathologic variables, outcome prediction can potentially be improved. Because the analyses can be conducted on routine paraffin-embedded material, it will now be possible to prospectively validate these markers in multicenter clinical trials on population-based cohorts.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1773-1773
Author(s):  
Jane Houldsworth ◽  
Asha Guttapalli ◽  
Xiao J. Yan ◽  
Charles Ma ◽  
Weiyi Chen ◽  
...  

Abstract Abstract 1773 Risk stratification in chronic lymphocytic leukemia (CLL) is highly desirable and should comprise not only evaluation of clinical features but also molecular prognostic markers. Currently such molecular markers include loss of 17p13, 11q22, 13q14, 6q22, and gain of chromosome 12 as assessed by fluorescence in situ hybridization (FISH) and mutation status of the variable region of the IGH gene (IGHV) by sequencing. In recent years, genome-wide scanning technologies such as array-comparative genomic hybridization (array-CGH) have revealed novel and refined known copy number alterations (CNAs) in the CLL genome. In order to evaluate the potential of array-CGH in prognostication in mature B-cell neoplasms, including CLL, and implement array-CGH in a clinical diagnostic laboratory, a targeted oligonucleotide-based microarray was custom designed to represent genomic regions exhibiting gain/loss in these lymphoid neoplasms. The 4 × 44K formatted array included 2 × 17,348 probes for the 80 selected genomic regions (average resolution of 34kbp), and recommended controls including a 1Mbp genome backbone. DNA extracted from two CLL datasets were submitted to array-CGH using an equimixture of commercially available male/female DNA as a reference. CNAs were detected using Genomics Workbench Lite (Agilent Technologies, Inc.) with the ADM2 algorithm. Analytical sensitivity was assessed by cell line DNA dilution and by FISH (116 specimens) and was 30–40% and 20–25%, respectively. Recurrent CNAs in previously untreated patients, greater than 1.5Mbp in size, were analyzed for association with time to first treatment (TTFT) and overall survival (OS) by the log rank test. Association with IGHV mutation status was tested using the Fisher's two-sided exact test. In both datasets for untreated specimens, unmutated IGHV negatively correlated with both TTFT and OS significantly (p < 0.05). Gain of chromosome 12 was detected in 11–12% of untreated specimens in both datasets and as expected did not associate with outcome. Loss of 13q14 as a sole abnormality (excluding copy number changes arising at known sites of normal variation) was associated with an overall favorable outcome, but specimens with loss of both loci (MIR15A/16-1 and RB1) versus one locus (MIR15A/16-1) did not display significantly different outcomes. As expected loss of 17p13 associated with shorter TTFT and OS, and was observed at higher levels in treated specimens. A similar result was observed for 11q22 loss but not in the second dataset, perhaps due to the relatively short follow-up time. Importantly, four additional copy number changes (gain of 2p, 3q, and 8q, and loss of 8p) were found to associate with shorter TTFT and/or OS, and also occurred at higher frequency in treated specimens. Notably, all but one specimen exhibiting two of these CNAs, were Rai Stage 0-II. After multiple comparisons correction, gain of 2p and 3q, and loss of 8p remained significantly associated with an unfavorable outcome. Gain of 2p25.3-p15 was observed exclusively in unmutated IGHV specimens. Loss of 18p and gain of 17q24 were not considered further for testing due to low frequency or lower frequency in treated specimens (data not shown). Uniquely, these data demonstrate in low-intermediate risk CLL cohorts the prognostic value of genomic gain/loss at multiple sites and support implementation of array-CGH into a clinical setting for risk stratification in CLL where genomic gain or loss of multiple clinically relevant genomic regions can be assessed simultaneously. Dataset 1 Untreated n = 81 TTFT p-value OS p-value Treated n = 38 Dataset 2 n = 169 TTFT p-value OS p-value Treated n = 28 Median TTFT 87.6 mo 24.1 mo Median OS 117.7 mo 37.2 mo Rai Stage     0 25 77     I-II 42 48     III-IV 5 1     na 9 43 Unmutated IGHV 46% (n=80) 0.0003 0.0004 38% (n=163) 0.002 0.044 13q14 loss (sole abnormality) 52.5% 0.038‡ 0.087‡ 33.7% 0.144‡ 0.008‡ MIR15A/16-1, RB1 27.5% 0.77 0.337 11.2% 0.011 1 MIR15A/16-1 25.0% 22.5% 11q22 loss (ATM) 12.3% 0.125 0.009 23.7% 8.3% 0.393 0.977 14.3% 17p13 loss (TP53) 2.5% 0.010 0.012 15.8% 4.7% 0.006 <.0001 10.7% 2p25.3-p15 gain 6.2% 0.002 <.0001 10.5% 3.0% 0.702 0.025 10.7% 8q24 gain 2.5% 0.238 0.014 7.9% 4.1% 0.564 0.007 0.0% 3q26-q27 gain 2.5% <.0001 <.0001 5.3% 3.0% 0.850 <.0001 7.1% 8p23-p21 loss 2.5% 0.002 0.016 10.5% 1.2% 1 <.0001 7.1% Unless otherwise noted, all values associated with shorter times ‡ Associated with longer time na not available Disclosures: Houldsworth: Cancer Genetics, Inc.: Employment. Guttapalli:Cancer Genetics, Inc.: Employment. Ma:Cancer Genetics, Inc.: Employment. Chen:Cancer Genetics, Inc.: Employment. Patil:Cancer Genetics, Inc.: Consultancy.


2012 ◽  
Vol 3 (7) ◽  
pp. e351-e351 ◽  
Author(s):  
I Petrini ◽  
P S Meltzer ◽  
P A Zucali ◽  
J Luo ◽  
C Lee ◽  
...  

BioTechniques ◽  
2008 ◽  
Vol 44 (7S) ◽  
pp. iii-vi
Author(s):  
Lars Prestegarden ◽  
Anjan Misra ◽  
Marcus L. Ware ◽  
Ru-Fang Yeh ◽  
Rolf Bjerkvig ◽  
...  

2010 ◽  
Vol 28 (18) ◽  
pp. 3054-3060 ◽  
Author(s):  
Andrey Korshunov ◽  
Marc Remke ◽  
Wiebke Werft ◽  
Axel Benner ◽  
Marina Ryzhova ◽  
...  

Purpose Medulloblastoma (MB) is the most common malignant brain tumor in children, whereas it rarely presents in adults. We aimed to identify genetic aberrations in 146 adult MBs to evaluate age-dependent differences in tumor biology and adapt age-specific risk stratification models. Methods As a screening set, we studied a cohort of 34 adult MBs by using array-based comparative genomic hybridization comparing molecular results with clinical data. DNA copy number aberrations identified as possible prognostic markers were validated in an independent cohort of 112 adult patients with MB by fluorescent in situ hybridization analysis. Results were compared with the data obtained from 404 pediatric patients with MB. Results CDK6 amplification, 10q loss, and 17q gain are the most powerful prognostic markers in adult MB. Whereas MYC/MYCN oncogene amplifications had a high prognostic value in pediatric MB, these aberrations were rarely observed in adult tumors. Surprisingly, adult MBs with 6q deletion and nuclear β-catenin activation did not share the excellent prognosis with their pediatric counterparts. Conclusion Adult MB is distinct from pediatric MB in terms of genomic aberrations and their impact on clinical outcomes. Therefore, adult MBs require age-specific risk stratification models. We propose a molecular staging system involving three distinct risk groups based on DNA copy number status of 10q and 17q.


2010 ◽  
Vol 105 (492) ◽  
pp. 1358-1375 ◽  
Author(s):  
Veerabhadran Baladandayuthapani ◽  
Yuan Ji ◽  
Rajesh Talluri ◽  
Luis E. Nieto-Barajas ◽  
Jeffrey S. Morris

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2431-2431
Author(s):  
Daniel T. Starczynowski ◽  
Suzanne Vercauteren ◽  
Adele Telenius ◽  
Sandy Sung ◽  
Kaoru Tohyama ◽  
...  

Abstract The myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematologic malignancies characterized by peripheral cytopenias, a hypercellular marrow with ineffective hematopoiesis and a propensity to progress to acute myeloid leukemia (AML). MDS is thought to arise from a primitive (CD34+) hematopoietic cell that has acquired genetic and/or epigenetic abnormalities. Risk stratification according to the International Prognostic Scoring System (IPSS) defines patient categories that correlate with survival and the likelihood of transformation to AML. Greater than 50% of individuals diagnosed with MDS are in the lower-risk groups. The importance of cytogenetics in risk stratification has been verified in several studies, but is of limited value in patients with lower-risk subtypes because approximately 50% of these patients do not have karyotypic abnormalities detectable using standard techniques. To further our biological understanding of lower-risk subtypes of MDS, and to identify potential MDS-initiating alterations in the genome, we looked for alterations in DNA extracts from purified CD34+ marrow cells from 44 MDS lower-risk patients using a submegabase bacterial artificial chromosome (BAC) array to perform whole genome comparative genomic hybridization (CGH) analyses. These studies identified numerous cryptic structural DNA alterations that were not detectable by standard cytogenetic analysis and were also not found in 15 age-matched normal controls. Although most patients tested had a normal karyotype, 23 recurring, novel copy number alterations of a median size of 0.6 megabases were identified. These included gains at 11q24.2-qter, 17q11.2 and 17q12, and losses at 2q33.1-q33.2 and 14q12. Comparison of changes in CD34+ marrow cells with DNA from CD3+ cells isolated from the same patients showed that a recurring duplication at band 17q12 was exclusive to the CD34+ cells in 2 of 3 patients. Validation of this copy number gain at chr 17q12 by FISH confirmed duplication of the locus. In addition, whole genome array CGH analysis of CD34+ marrow cells from karyotypically normal (n = 25) and abnormal (n = 15) lower risk MDS patients revealed extensive genome alterations (involving &gt;3 Mb) correlated with poorer overall survival, and was more frequently associated with transformation to AML as compared to IPSS stratification alone. Our studies suggest that array CGH may be useful as an ancillary test to better stratify lower-risk subtypes of MDS and, at the same time lead to the identification of early mutations that contribute to disease initiation.


2004 ◽  
Vol 17 (6) ◽  
pp. 617-622 ◽  
Author(s):  
Kiichiro Hashimoto ◽  
Naohide Mori ◽  
Takao Tamesa ◽  
Toshimasa Okada ◽  
Shigeto Kawauchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document