scholarly journals Association of Cell-Free DNA Tumor Fraction and Somatic Copy Number Alterations With Survival in Metastatic Triple-Negative Breast Cancer

2018 ◽  
Vol 36 (6) ◽  
pp. 543-553 ◽  
Author(s):  
Daniel G. Stover ◽  
Heather A. Parsons ◽  
Gavin Ha ◽  
Samuel S. Freeman ◽  
William T. Barry ◽  
...  

Purpose Cell-free DNA (cfDNA) offers the potential for minimally invasive genome-wide profiling of tumor alterations without tumor biopsy and may be associated with patient prognosis. Triple-negative breast cancer (TNBC) is characterized by few mutations but extensive somatic copy number alterations (SCNAs), yet little is known regarding SCNAs in metastatic TNBC. We sought to evaluate SCNAs in metastatic TNBC exclusively via cfDNA and determine if cfDNA tumor fraction is associated with overall survival in metastatic TNBC. Patients and Methods In this retrospective cohort study, we identified 164 patients with biopsy-proven metastatic TNBC at a single tertiary care institution who received prior chemotherapy in the (neo)adjuvant or metastatic setting. We performed low-coverage genome-wide sequencing of cfDNA from plasma. Results Without prior knowledge of tumor mutations, we determined tumor fraction of cfDNA for 96.3% of patients and SCNAs for 63.9% of patients. Copy number profiles and percent genome altered were remarkably similar between metastatic and primary TNBCs. Certain SCNAs were more frequent in metastatic TNBCs relative to paired primary tumors and primary TNBCs in publicly available data sets The Cancer Genome Atlas and METABRIC, including chromosomal gains in drivers NOTCH2, AKT2, and AKT3. Prespecified cfDNA tumor fraction threshold of ≥ 10% was associated with significantly worse metastatic survival (median, 6.4 v 15.9 months) and remained significant independent of clinicopathologic factors (hazard ratio, 2.14; 95% CI, 1.4 to 3.8; P < .001). Conclusion We present the largest genomic characterization of metastatic TNBC to our knowledge, exclusively from cfDNA. Evaluation of cfDNA tumor fraction was feasible for nearly all patients, and tumor fraction ≥ 10% is associated with significantly worse survival in this large metastatic TNBC cohort. Specific SCNAs are enriched and prognostic in metastatic TNBC, with implications for metastasis, resistance, and novel therapeutic approaches.

2021 ◽  
pp. 1777-1787
Author(s):  
Katharine A. Collier ◽  
Sarah Asad ◽  
David Tallman ◽  
Janet Jenison ◽  
Andrei Rajkovic ◽  
...  

PURPOSE To determine whether specific somatic copy-number alterations detectable in circulating tumor DNA (ctDNA) from patients with metastatic triple-negative breast cancer (mTNBC) are associated with sensitivity to platinum chemotherapy. MATERIALS AND METHODS In this secondary analysis of a large cohort of patients with mTNBC whose ctDNA underwent ultralow-pass whole-genome sequencing, tumor fraction and somatic copy-number alterations were derived with the ichorCNA algorithm. Seventy-two patients were identified who had received a platinum-based chemotherapy regimen in the metastatic setting. Gene-level copy-number analyses were performed with GISTIC2.0. Cytobands were associated with progression-free survival (PFS) to platinum chemotherapy using Cox proportional hazards models. The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium data sets were interrogated for frequency of significant cytobands in primary triple-negative breast cancer (pTNBC) tumors. RESULTS Among 71 evaluable patients, 17q21 and 17q22 amplifications were most strongly associated with improved PFS with platinum chemotherapy. There were no significant differences in clinicopathologic features or (neo)adjuvant chemotherapy among patients with 17q22 amplification. Patients with 17q22 amplification (n = 17) had longer median PFS with platinum (7.0 v 3.8 months; log-rank P = .015) than patients without 17q22 amplification (n = 54), an effect that remained significant in multivariable analyses (PFS hazard ratio 0.37; 95% CI, 0.16 to 0.84; P = .02). Among 39 patients who received the nonplatinum chemotherapy agent capecitabine, there was no association between 17q22 amplification and capecitabine PFS (log-rank P = .69). In The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium, 17q22 amplification occurred in more than 20% of both pTNBC and mTNBC tumors, whereas 17q21 was more frequently amplified in mTNBC relative to pTNBC (16% v 8.1%, P = .015). CONCLUSION The 17q22 amplicon, detected by ctDNA, is associated with improved PFS with platinum chemotherapy in patients with mTNBC and warrants further investigation.


2008 ◽  
Vol 47 (6) ◽  
pp. 490-499 ◽  
Author(s):  
Wonshik Han ◽  
Eun-Mi Jung ◽  
Jihyoung Cho ◽  
Jong Won Lee ◽  
Ki-Tae Hwang ◽  
...  

2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Milica Nedeljković ◽  
Nikola Tanić ◽  
Tatjana Dramićanin ◽  
Zorka Milovanović ◽  
Snežana Šušnjar ◽  
...  

Summary Background: Triple negative breast cancer (TNBC) is characterized by aggressive clinical course and is unresponsive to anti-HER2 and endocrine therapy. TNBC is difficult to treat and is often lethal. Given the need to find new targets for therapy we explored clinicopathological significance of copy number gain of FGFR1 and c-MYC. Our aim was to determine the impact of FGFR1 and c-MYC copy number gain on clinical course and outcome of TNBC. Methods: FGFR1 and c-MYC gene copy number alterations were evaluated in 78 archive TNBC samples using TaqMan based quantitative real time PCR assays. Results: 50% of samples had increased c-MYC copy number. c-MYC copy number gain was associated with TNBC in contrast to ER positive cancers. Our results showed significant correlation between c-MYC copy number gain and high grade of TNBCs. This suggests that c-MYC copy number could be an useful prognostic marker for TNBC patients. c-MYC copy number gain was associated with high pTNM stage as well as lobular and medullary tumor subtypes. 43% of samples had increased FGFR1 copy number. No correlations between FGFR1 copy number gain and clinicopathological variables were observed. Conclusions: We identified c-MYC copy number gain as a prognostic marker for TNBC. Our results indicate that c- MYC may contribute to TNBC progression. We observed no significant association between c-MYC and/or FGFR1 copy number status and patient survival.


2020 ◽  
Author(s):  
Ramakanth Chirravuri-Venkata ◽  
Dario Ghersi ◽  
Apar K. Ganti ◽  
Imayavaramban Lakshmanan ◽  
Sanjib Chaudary ◽  
...  

AbstractThe contrast in therapy sensitivity and response across triple negative breast cancer (TNBC) patients suggest underlying genotypic heterogeneity. Using publicly available data, we found significant associations between DNA-level copy number alterations of 1q21.3 locus and therapy sensitivity. We show that in spite of their aggressive nature, 1q21.3 amplified tumors are more responsive to commonly used cytotoxic therapies, highlighting the relevance of 1q21.3 copy number status as a genetic marker for risk stratification, therapy selection and response.


Sign in / Sign up

Export Citation Format

Share Document