somatic copy number alterations
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 41)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations’ stochastic natures. Using a Tn5-transposase-assisted single-cell whole-genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, whereas monosomy X occurred most frequently in over-30-yr-old females. In the monosomy X single cells from individuals with phased genomes and identified X-inactivation ratios in bulk, the inactive X Chromosomes were lost more often than the active ones.


2021 ◽  
Author(s):  
Baifeng Zhang ◽  
Peilin Jia ◽  
Jiayin Wang ◽  
Guangsheng Pei ◽  
Changxi Wang ◽  
...  

Abstract The incidence and survival of bladder cancer vary greatly among different populations but the influence of the associated molecular features and evolutionary processes on its clinical treatment and prognostication remains unknown. Here, we analyze the genomic architectures of over 500 bladder cancer patients from Asian/Black/White populations. We identify novel association between AHNAK mutations and APOBEC-a mutational signature whose activities vary substantially across populations. All significantly mutated genes but only half of arm-level somatic copy number alterations (SCNAs) are enriched with clonal events, indicating large-scale SCNAs as rich sources fostering bladder cancer clonal diversities. The prevalence of TP53 and ATM clonal mutations as well as the associated burden of SCNAs is significantly higher in Whites/Blacks than in Asians. We identify a trans-ancestry prognostic subtype of bladder cancer characterized by: enrichment of non-muscle-invasive patients and muscle-invasive patients with good prognosis, increased CREBBP/FGFR3/HRAS/NFE2L2 mutations, decreased intra-tumor heterogeneity and genome instability and activated tumor microenvironment.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Vera Chesnokova ◽  
Shlomo Melmed

Abstract Replicative senescence occurs due to an inability to repair DNA damage and activation of p53/p21 and p16INK4 pathways. It is considered a preventive mechanism for arresting proliferation of DNA-damaged cells. Stably senescent cells are characterized by a senescence-associated secretory phenotype (SASP), which produces and secretes cytokines, chemokines, and/or matrix metalloproteinases depending on the cell type. SASP proteins may increase cell proliferation, facilitating conversion of premalignant to malignant tumor cells, triggering DNA damage, and altering the tissue microenvironment. Further, senescent cells accumulate with age, thereby aggravating age-related tissue damage. Here, we review a heretofore unappreciated role for growth hormone (GH) as a SASP component, acting in an autocrine and paracrine fashion. In senescent cells, GH is activated by DNA-damage-induced p53 and inhibits phosphorylation of DNA repair proteins ATM, Chk2, p53, and H2AX. Somatotroph adenomas containing abundant intracellular GH exhibit increased somatic copy number alterations, indicative of DNA damage, and are associated with induced p53/p21. As this pathway restrains proliferation of DNA-damaged cells, these mechanisms may underlie the senescent phenotype and benign nature of slowly proliferating pituitary somatotroph adenomas. In highly proliferative cells, such as colon epithelial cells, GH induced in response to DNA damage suppresses p53, thereby triggering senescent cell proliferation. As senescent cells harbor unrepaired DNA damage, GH may enable senescent cells to evade senescence and reenter the cell cycle, resulting in acquisition of harmful mutations. These mechanisms, at least in part, may underlie pro-aging effects of GH observed in animal models and in patients with chronically elevated GH levels.


2021 ◽  
Author(s):  
Yoshihiro Shioi ◽  
Mitsumasa Osakabe ◽  
Naoki Yanagawa ◽  
Hiroyuki Nitta ◽  
Akira Sasaki ◽  
...  

Aim: Biliary tract carcinoma (BTC), including gall bladder carcinoma (GBC) and biliary duct carcinoma (BDC), has a poor prognosis. Comprehensive genomic profiling has important roles in evaluation of the carcinogenesis of BTC. Materials & methods: We examined somatic copy number alterations (SCNAs) using a single nucleotide polymorphism array system to analyze 36 BTC samples (11 GBCs and 25 BDCs). Results: In hierarchical cluster analysis, two clusters were identified (subgroup 1 with low SCNAs and subgroup 2 with high SCNAs). GBC was predominant in subgroup 1, whereas BDC was predominant in subgroup 2, suggesting that GBC and BDC had different genetic backgrounds in terms of SCNAs. Conclusion: These findings could be helpful for establishing the molecular carcinogenesis of BTCs.


2021 ◽  
Author(s):  
Lu Liu ◽  
He Chen ◽  
Cheng Sun ◽  
Jianyun Zhang ◽  
Juncheng Wang ◽  
...  

Genomic-scale somatic copy number alterations in healthy humans are difficult to investigate because of low occurrence rates and the structural variations' stochastic natures. Using a Tn5-transposase assisted single-cell whole genome sequencing method, we sequenced over 20,000 single lymphocytes from 16 individuals. Then, with the scale increased to a few thousand single cells per individual, we found that about 7.5% of the cells had large-size copy number alterations. Trisomy 21 was the most prevalent aneuploid event among all autosomal copy number alterations, while monosomy X occurred most frequently in over-30-year-old females. In the monosomy X single cells from individuals with phased genomes and identified X- inactivation ratios in bulk, the inactive X Chromosomes were lost more often than were the active ones.


2021 ◽  
Author(s):  
Gregory J Kimmel ◽  
Thomas Veith ◽  
Samuel Bakhoum ◽  
Philipp Martin Altrock ◽  
Noemi Andor

The incidence of somatic copy number alterations (SCNAs) per base pair of the genome is orders of magnitudes larger than that of point mutations. This makes SCNAs phenotypically effective. One mitotic event stands out in its potential to significantly change a cell's SCNA burden -- a chromosome missegregation. We have presented a general deterministic framework for modeling whole chromosome missegregations and use it to evaluate the possibility of missegregation-induced population extinction (MIE). The model predicts critical curves that separate viable from non-viable populations as a function of their turnover- and mis-segregation rates. Missegregation- and turnover rates estimated for nine cancer types are then compared to these predictions for various biological assumptions. The assumption of heterogeneous missegregation rates within a tumor was sufficient to explain the observed data. By contrast, when assuming constant mis-segregation rates, several cancers were located in regions predicted as unviable. Intra-tumor heterogeneity, including heterogeneity in mis-segregation rates, increases as tumors progress. Our predictions suggest that this intra-tumor heterogeneity hinders the chance of success of therapies aimed at MIE.


2021 ◽  
pp. 1777-1787
Author(s):  
Katharine A. Collier ◽  
Sarah Asad ◽  
David Tallman ◽  
Janet Jenison ◽  
Andrei Rajkovic ◽  
...  

PURPOSE To determine whether specific somatic copy-number alterations detectable in circulating tumor DNA (ctDNA) from patients with metastatic triple-negative breast cancer (mTNBC) are associated with sensitivity to platinum chemotherapy. MATERIALS AND METHODS In this secondary analysis of a large cohort of patients with mTNBC whose ctDNA underwent ultralow-pass whole-genome sequencing, tumor fraction and somatic copy-number alterations were derived with the ichorCNA algorithm. Seventy-two patients were identified who had received a platinum-based chemotherapy regimen in the metastatic setting. Gene-level copy-number analyses were performed with GISTIC2.0. Cytobands were associated with progression-free survival (PFS) to platinum chemotherapy using Cox proportional hazards models. The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium data sets were interrogated for frequency of significant cytobands in primary triple-negative breast cancer (pTNBC) tumors. RESULTS Among 71 evaluable patients, 17q21 and 17q22 amplifications were most strongly associated with improved PFS with platinum chemotherapy. There were no significant differences in clinicopathologic features or (neo)adjuvant chemotherapy among patients with 17q22 amplification. Patients with 17q22 amplification (n = 17) had longer median PFS with platinum (7.0 v 3.8 months; log-rank P = .015) than patients without 17q22 amplification (n = 54), an effect that remained significant in multivariable analyses (PFS hazard ratio 0.37; 95% CI, 0.16 to 0.84; P = .02). Among 39 patients who received the nonplatinum chemotherapy agent capecitabine, there was no association between 17q22 amplification and capecitabine PFS (log-rank P = .69). In The Cancer Genome Atlas and Molecular Taxonomy of Breast Cancer International Consortium, 17q22 amplification occurred in more than 20% of both pTNBC and mTNBC tumors, whereas 17q21 was more frequently amplified in mTNBC relative to pTNBC (16% v 8.1%, P = .015). CONCLUSION The 17q22 amplicon, detected by ctDNA, is associated with improved PFS with platinum chemotherapy in patients with mTNBC and warrants further investigation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangxi Sun ◽  
Junru Chen ◽  
Jiayu Liang ◽  
Xiaoxue Yin ◽  
Mengni Zhang ◽  
...  

AbstractTFE3-translocation renal cell carcinoma (TFE3-tRCC) is a rare and heterogeneous subtype of kidney cancer with no standard treatment for advanced disease. We describe comprehensive molecular characteristics of 63 untreated primary TFE3-tRCCs based on whole-exome and RNA sequencing. TFE3-tRCC is highly heterogeneous, both clinicopathologically and genotypically. ASPSCR1-TFE3 fusion and several somatic copy number alterations, including the loss of 22q, are associated with aggressive features and poor outcomes. Apart from tumors with MED15-TFE3 fusion, most TFE3-tRCCs exhibit low PD-L1 expression and low T-cell infiltration. Unsupervised transcriptomic analysis reveals five molecular clusters with distinct angiogenesis, stroma, proliferation and KRAS down signatures, which show association with fusion patterns and prognosis. In line with the aggressive nature, the high angiogenesis/stroma/proliferation cluster exclusively consists of tumors with ASPSCR1-TFE3 fusion. Here, we describe the genomic and transcriptomic features of TFE3-tRCC and provide insights into precision medicine for this disease.


2021 ◽  
Vol 11 ◽  
Author(s):  
Luuk Harbers ◽  
Federico Agostini ◽  
Marcin Nicos ◽  
Dimitri Poddighe ◽  
Magda Bienko ◽  
...  

Somatic copy number alterations (SCNAs) are a pervasive trait of human cancers that contributes to tumorigenesis by affecting the dosage of multiple genes at the same time. In the past decade, The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) initiatives have generated and made publicly available SCNA genomic profiles from thousands of tumor samples across multiple cancer types. Here, we present a comprehensive analysis of 853,218 SCNAs across 10,729 tumor samples belonging to 32 cancer types using TCGA data. We then discuss current models for how SCNAs likely arise during carcinogenesis and how genomic SCNA profiles can inform clinical practice. Lastly, we highlight open questions in the field of cancer-associated SCNAs.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3340
Author(s):  
Mary E. Kim ◽  
Ashley Polski ◽  
Liya Xu ◽  
Rishvanth K. Prabakar ◽  
Chen-Ching Peng ◽  
...  

Aqueous humor (AH) liquid biopsy has been established as a surrogate tumor biopsy for retinoblastoma (RB). Previous AH studies have focused on highly recurrent RB somatic copy number alterations (SCNAs) including gain of 1q, 2p, 6p, and loss of 13q and 16q. In this retrospective study, we provide a comprehensive, whole-genome analysis of RB SCNAs and evaluate associated clinical features for 68 eyes of 64 RB patients from whom AH was obtained between December 2014 and October 2020. Shallow whole-genome sequencing of AH cell-free DNA was performed to assess for SCNAs. The prevalence of specific non-highly recurrent SCNAs, such as 20q gain and 8p loss, differed between primarily and secondarily enucleated eyes. Increases in chromosomal instability predict more advanced seeding morphology (p = 0.015); later age of diagnosis (p < 0.0001); greater odds of an endophytic tumor growth pattern (without retinal detachment; p = 0.047); tumor heights >10 mm (p = 0.09); and containing 6p gain, a biomarker of poor ocular prognosis (p = 0.004). The AH liquid biopsy platform is a high-yield method of whole-genome RB SCNA analysis, and SCNAs are associated with numerous clinical findings in RB eyes. Prospective analyses are encouraged to further elucidate the clinical relevance of specific SCNAs in RB.


Sign in / Sign up

Export Citation Format

Share Document