Preclinical evaluation of an engineered oncolytic herpes simplex virus for pediatric osteosarcoma.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 10040-10040
Author(s):  
Sara Hutchins ◽  
Raoud Marayati ◽  
Laura V. Bownes ◽  
Colin H. Quinn ◽  
Jerry E. Stewart ◽  
...  

10040 Background: Osteosarcoma is the most common primary bone tumor in children. For those with relapsed or metastatic disease, the five-year survival rate is approximately 20%, and survivors often suffer from long-term disability from current therapies. The high morbidity and mortality for these patients highlight a great need for improved therapies. One such novel therapeutic approach is oncolytic herpes simplex virus (oHSV) immunovirotherapy. We previously demonstrated that M002, an engineered oHSV that contains deletions of the neurovirulence gene preventing infection of normal cells, effectively infects and kills neuroblastoma and rhabdomyosarcoma. Currently, similar oHSVs are being evaluated in early phase clinical trials for children and adults with relapsed or refractory brain tumors. To date, there has been limited investigation of oncolytic virotherapy in osteosarcoma. Thus, we sought to examine the ability of oHSV, M002, to infect and kill osteosarcoma cells in vitro. Methods: We evaluated two long-term passaged human osteosarcoma cell lines, U2-OS and MG-63. Flow cytometry was used to assess baseline expression of oHSV viral entry-mediated receptors (CD111, CD112, syndecan, HVEM). Single and multi-step viral recovery experiments measured virus infectivity and replication. Cells were infected with increasing multiplicity of infection (MOI) of M002, and cell viability was measured 72 hours post-infection via alamarBlue assay. Results: Both MG-63 and U2-OS cells expressed HSV entry molecules (Table) including high levels of the primary HSV entry molecule CD111. Single step virus recovery experiments in MG-63 cells infected at a MOI of 10 plaque-forming units (PFU)/cell demonstrated a 3 log-fold increase in virus titer from 12 to 24 hours post-infection. For multi-step experiments, MG-63 cells were infected with a MOI of 0.1 PFU/cell; viral replication significantly increased from 1.1x103 PFU at 6 hours post-infection to 3.8x1010 PFU at 72 hours post-infection. M002 successfully decreased osteosarcoma viability with a lethal dose in 50% of cells (LD50)of 2.82 and0.67 PFU/cell for MG-63 and U2-OS cells, respectively. Notably, at a virus MOI of 5 PFU/cell, viability was decreased by 64% ± 0.1% (p<0.001 vs control) in MG-63 cells and 96% ± 0.1% (p<0.001 vs control) in U2-OS cells. Conclusions: MG-63 and U2-OS osteosarcoma cells express high levels of HSV entry receptors. Virus recovery experiments demonstrated the ability of M002 to infect cells and replicate over time. The viability of osteosarcoma cells significantly decreased following infection with M002. These data suggest M002 may be a promising novel therapeutic option for patients with osteosarcoma and warrant further investigation for translation to the clinical setting.[Table: see text]

2021 ◽  
Vol 21 ◽  
Author(s):  
Xinwei Huang ◽  
Xiuqing Li ◽  
Lijuan Yang ◽  
Pengfei Wang ◽  
Jingyuan Yan ◽  
...  

Aims: We aim to define parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors and optimize the expression cassettes to achieve robust and sustained expression in CNS. Background: Engineered, attenuated Herpes simplex virus (HSV) vectors are promising vehicles for gene delivery to the peripheral and central nervous systems. The virus latent promoter (LAP) is commonly used to drive exogenous gene expression; however, parameters affecting the safety and long-term transgene expression of attenuated HSV-1 vectors have not been fully understood. Objective: This study aimed to construct attenuated HSV-1 vectors using the CRISPR-Cas9 system and examine the influence of transgene cassette construction and insertion site on transgene expression and vector safety. Method: In this study, we used a CRISPR-Cas9 system to accurately and efficiently edit attenuated HSV-1 strain 1716, and constructed two series of recombinant virus LMR and LMRx with different sets of gene cassettes insertion in Exon1(LAP2) and 2.0 kb intron downstream of LAP, respectively. The transgene expression and viral gene transcriptional kinetics were compared in in-vitro cell lines. The reporter gene expression and safety profiles of each vector were further evaluated in the mouse hippocampus gene transduction model. Result: The in-vitro cell line analysis indicated that the insertion of a gene expression cassette would disrupt virus gene transcription. Mouse hippocampus transducing analysis suggested that complete expression cassette insertion at 2.0 kb intron could achieve robust and longtime gene expression than the other constructs. Recombinants with gene expression cassettes lacked Poly (A), which induced significant neuronal inflammation due to persistent viral antigen expression and microglia activation. Conclusion: Our results indicated that the integrity of LAT transcripts was not necessary for the establishment of long-term latent expression. Exogenous strong promoters (like cBh promoter) could remain active during latency when placed in Exon1 or 2.0 Kb Intron of LAT locus, although their transcriptional activity declined with time. Consistent with previous research, the foreign gene expression would last much longer when the gene cassette was located downstream of Exon1, which suggested a role of LAP2 in maintaining promoter activity during latency. Besides, over-transcription of the downstream part of LAT may induce continuous activation of the attenuated vectors, suggesting an important role of LAT in maintaining viral reactivation potential.


Sign in / Sign up

Export Citation Format

Share Document