A phase 1, multicenter, open-label, dose-escalation, safety, pharmacodynamic, pharmacokinetic study of Q702 with a cohort expansion at the RP2D in patients with advanced solid tumors.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS2673-TPS2673
Author(s):  
Angela Tatiana Alistar ◽  
Anthony B. El-Khoueiry ◽  
Devalingam Mahalingam ◽  
Monica M. Mita ◽  
Hwankyu Kang ◽  
...  

TPS2673 Background: Immune checkpoint inhibitors directly targeting T cell activation have been successfully used in the treatment of various malignancies, nevertheless, the durable ORRs are low for certain indications. The low ORRs have been attributed to the immune suppressive tumor microenvironment (TME), composed of innate immune suppressive components such as tumor associated macrophages (TAM) and myeloid-derived suppression cells (MDSC). The potential contributions of innate immune modulation to anti-tumor immunity, suggest the need for the novel strategies to elicit a more efficient/robust immune response against the targeted malignant cells. Axl, Mer and CSF1R receptor tyrosine kinases play vital roles in promoting an immune suppressive TME by affecting TAM and MDSC populations and by decreasing antigen presentation on tumor cells. Q702 is a novel Axl/Mer/CSF1R inhibitor, able to modulate the TAM and MDSC population leading to CD8+ T cell activation and to increase antigen presentation of the tumor cells in syngeneic animal models. Q702, as a monotherapy, shows significant tumor growth inhibition in multiple syngeneic tumor models, and demonstrates synergistic effects with anti-PD-1 treatment particularly in high myeloid containing tumor models. Interestingly, intermittent administration of Q702 monotherapy demonstrates a more favorable immune cell population changes, possibly through preventing immune exhaustion secondary to negative feedback with continuous activation. These results suggest that Q702 monotherapy or in combination with existing therapies have a good potential to become a novel treatment strategy for patients with advanced solid tumors. Methods: “A Phase 1, Multicenter, Open-label, Dose-Escalation, Safety, Pharmacodynamic, Pharmacokinetic Study of Q702 with a Cohort Expansion at the RP2D in Patients with Advanced Solid Tumors. (NCT04648254)” is open and recruiting patients at 4 US investigative sites. Patients with histologically or cytologically confirmed advanced or metastatic solid tumors, that have progressed following SOC or for which there is no SOC which confers clinical benefit are being enrolled in this study. The study follows a standard dose escalation. The study will enroll up to 78 patients. The primary endpoint is to establish safety, PK profile and define the recommended phase 2 dose. The secondary and exploratory endpoints include establishing pharmacokinetic/pharmacodynamic relationship, potential biomarkers and preliminary anti-tumor activity. Clinical trial information: NCT04648254.

2014 ◽  
Vol 74 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Johanna C. Bendell ◽  
David S. Hong ◽  
Howard A. Burris ◽  
Aung Naing ◽  
Suzanne F. Jones ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2580-2580
Author(s):  
Jermaine Coward ◽  
Afaf Abed ◽  
Adnan Nagrial ◽  
Ben Markman

2580 Background: YH003, a recombinant, humanized agonistic anti-CD40 IgG2 monoclonal antibody (mAb) specifically recognizes and agonizes CD40 on the antigen-presenting cells to enhance immune responses. Preclinical data have shown potent anti-cancer activity when combined with anti-PD-1 antibodies. Methods: This is an ongoing phase 1 dose-escalation study. Patients with advanced solid tumors receive YH003 by IV administration Q3W as monotherapy at 0.03 to 3.0 mg/kg for the first cycle (21 days) then in combination with Toripalimab at 240 mg Q3W for the 4 subsequent cycles in an accelerated “3+3” design. The safety, tolerability and preliminary efficacy data will be analyzed. Results: As of 31 Dec 2020 data cutoff, 9 patients (pts) were enrolled and treated at 0.03 mg/kg (n = 3), 0.1mg/kg (n = 3), and 0.3mg/kg (n = 3). The median age was 63 years (range 33-68). Baseline ECOG scores were 0 (7 pts) and 1 (2 pts) with a median of 2 prior lines therapy (range 1-7). 5 pts had received prior immunotherapy (PD-1/PD-L1 or PD-1+CTLA-4). As of data cutoff, no dose limiting toxicities (DLT) were observed. No Serious Adverse Event (SAE) or AEs leading to treatment discontinuation were reported. Four drug related AEs were reported including one Grade 1 (G1) choroidal thickening (related to YH003) at 0.03 mg/kg, one G1 fatigue (related to YH003) at 0.1 mg/kg, two G1 febrile episodes (one related to YH003 and the other related to combination treatment) at 0.3 mg/kg. Among 5 patients assessable for response, there were 2 SD (one with anti-PDL1 refractory Merkel cell carcinoma at 0.03 mg/kg and one with anti-PD1 refractory NSCLC at 0.1 mg/kg) and 1 PR with anti-PD1/anti-CTLA4 refractory ocular melanoma at 0.1 mg/kg. Conclusions: YH003 was well tolerated up to 0.3 mg/kg dose levels when combined with Toripalimab and has shown encouraging antitumor activity in patients with advanced solid tumors. Clinical trial information: NCT04481009.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2568-2568
Author(s):  
Jason J. Luke ◽  
Anthony J. Olszanski ◽  
Igor Puzanov ◽  
Dan Lu ◽  
Adrian Hackett ◽  
...  

2568 Background: IL-2 and IL-15 signal through the shared IL-2/15 βγ receptor, but unlike IL-2, IL-15 does not expand regulatory T cells (Tregs), does not mediate activation-induced cell death and may have an improved therapeutic index. KD033 is a fusion antibody combining a fully human, high affinity anti-human Programmed Death Ligand 1 (PD-L1) IgG1 antibody with the human IL-15 receptor alpha (IL15Rα) sushi domain and human IL-15 (IL-15). KD033 (or its mouse cross reactive surrogate molecule, srKD033) has been extensively characterized in multiple in vitro and in vivo nonclinical studies. The fusion of anti-PD-L1 antibody to IL-15 significantly increases the maximal-tolerated dose (MTD) of srKD033 in mice compared to free IL-15. In addition, srKD033 has exhibited increased efficacy in rejecting tumors in mice as compared to the combination of its individual components, anti-PD-L1 antibody and IL-15. Methods: This is a phase 1, open-label, multiple ascending dose, multi-center clinical trial being conducted in patients with metastatic or locally advanced solid tumors (NCT04242147). The primary objective is to determine the safety and tolerability and the MTD of KD033. Secondary objectives include characterization of PK and immunogenicity, evaluation of CD8 T and NK cell activation and assessment of best overall response and duration of response. KD033 is administered by IV infusion over 30 minutes every 14 days. Accelerated intra-patient dose escalation across the initial three dose levels, followed by 3+3 escalation thereafter, is investigating dose ranges from 3 µg/kg to 600 µg/kg. Efficacy evaluation is planned in an expansion cohort of patients with PD-1/L1 refractory tumors. Results: A total of 7 patients have received treatment. Three patients were dosed in Cohort 1 and four patients were dosed in Cohort 2. Through two dose escalation cohorts (3 µg/kg – 25 µg/kg), no dose-limiting toxicities have been reported. Grade 1-2 treatment-related toxicities, when observed, resolved within 24 hours with supportive management. 6 patients are evaluable for treatment response with one patient (adenoid cystic carcinoma) in the first cohort having stable disease for more than 6 months. Conclusions: KD033 has been well tolerated early in dose escalation with on-mechanism pharmacodynamics consistent with IL-15 agonism. Clinical trial information: NCT04242147.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS2672-TPS2672
Author(s):  
Kyriakos P. Papadopoulos ◽  
Nehal J. Lakhani ◽  
Timothy A. Yap ◽  
Allison L Naumovski ◽  
Karen S Brown ◽  
...  

TPS2672 Background: Leukocyte Immunoglobulin-like receptor B2 [LILRB2; immunoglobulin-like transcript 4 (ILT4)] is an immunoinhibitory protein expressed on the surface of myeloid cells and is a therapeutic target of interest in immuno-oncology. Published data showed that antagonism of LILRB2 resulted in the repolarization of human macrophages from an M2 (suppressive) to M1 (pro-inflammatory) phenotype, and enhancement of anti-tumor immunity in a mouse model (Chen 2018). JTX-8064 is a novel humanized IgG4 monoclonal antagonist antibody that selectively binds LILRB2 and prevents it from binding its ligands, classical and non-classical MHC I molecules. By blocking the ability of LILRB2 to bind HLA-A/B and/or HLA-G, a marker of immunotolerance on cancer cells, JTX-8064 has been shown to enhance pro-inflammatory cytokine production in macrophages (Cohen 2019). Additionally, blocking HLA-A/B-LILRB2 binding with JTX-8064 may augment antigen presentation and has been shown to lead to enhanced T cell activation and IFNg production (McGrath 2021). Using an ex vivo tumor explant model, we observed an IFNg-associated pharmacodynamic response in tumor tissue treated with JTX-8064 and a PD-1 inhibitor (PD-1i) that was not observed with PD-1i alone. Biomarkers were identified that predicted this JTX-8064 driven response (Hashambhoy-Ramsay 2020). It is hypothesized that JTX-8064 is a novel macrophage immune checkpoint inhibitor that may overcome mechanisms of resistance to PD-1i in tumors not responsive to JTX-8064 or PD-1i alone. Methods: The primary objectives of this open-label, phase 1, first-in-human, multicenter trial are to determine the safety and tolerability, and the recommended phase 2 dose (RP2D) of JTX-8064 as a monotherapy and in combination with a PD-1i, JTX-4014 (a Jounce investigational agent) or pembrolizumab, in patients with advanced solid tumors (NCT04669899). The INNATE study will consist of 4 stages: 1) JTX-8064 monotherapy dose escalation, 2) JTX-8064 dose escalation in combination with a PD-1i, 3) JTX-8064 monotherapy in indication-specific expansion cohorts and 4) JTX-8064 in combination with a PD-1i in indication-specific expansion cohorts. Stages 1 and 2 will employ an innovative interval i3 + 3 design with Bayesian decision framework to guide dose escalation. Safety, pharmacokinetic and receptor occupancy data will be considered during dose escalation. INNATE will assess pharmacodynamic and potential predictive biomarkers of response, and the expansion cohorts will explore multiple patient populations, including PD-(L)1i sensitive and PD-(L)1i-resistant (primary or acquired) patients to address current unmet medical needs. Enrolment in INNATE began in January 2021. Clinical trial information: NCT04669899.


2016 ◽  
Vol 34 (15_suppl) ◽  
pp. 2510-2510 ◽  
Author(s):  
John H. Strickler ◽  
John J. Nemunaitis ◽  
Colin D. Weekes ◽  
Ramesh K. Ramanathan ◽  
Eric Angevin ◽  
...  

2014 ◽  
Vol 32 (15_suppl) ◽  
pp. 2507-2507 ◽  
Author(s):  
John H. Strickler ◽  
Patricia LoRusso ◽  
Chia-Jui Yen ◽  
Chia-Chi Lin ◽  
Yoon-Koo Kang ◽  
...  

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. TPS3157-TPS3157
Author(s):  
Steven O'Day ◽  
Chethan Ramamurthy ◽  
Andrea J. Bullock ◽  
Anthony B. El-Khoueiry ◽  
Lernik Ohanjanian ◽  
...  

TPS3157 Background: AGEN1181 is a novel Fc-optimized anti-CTLA4 antibody, currently being evaluated in an ongoing multi-center, open-label, phase 1 study in all advanced solid tumors as mono-therapy and combination with anti-PD-1 antibody, AGEN2034 (NCT03860272). AGEN1181 is Fc-engineered to harness a novel mechanism for enhanced FcγR-dependent functionality relative to first-generation CTLA-4 antibodies. In pre-clinical models, AGEN1181 enhances T cell priming, depletion of intratumoral regulatory T cells (Treg) and improved memory formation compared to first-generation anti-CTLA-4 antibodies. Most notably, AGEN1181 demonstrates improved binding to FcyRIIIA and superior T cell responsiveness in populations that only express the low affinity FcγRIIIA receptor relative to first-generation IgG1 CTLA-4 antibodies. The combination of AGEN1181 and AGEN2034 further enhances T cell activation and effector function. Methods: This phase 1 study is an open-label, multi-center dose-escalation designed to evaluate the safety, tolerability, dose limiting toxicity (DLT) PK, and pharmacodynamic profiles of patients with refractory advanced solid tumors who did not receive an anti-CTLA4 previously. The study is being conducted in 3 arms; with patients assigned using a standard 3+3 dose escalation design in the mono-therapy arms with AGEN1181 and an accelerated design in the combination with AGEN2034 arm. AGEN1181 is administered as IV infusion as mono-therapy on Day 1 of every 3 weeks (0.1,0.3,1,2,4 mg/kg), every 6-weeks (1,2,4 mg/kg) in parallel cohorts and every 6-weeks (0.1,0.3,1,2,4 mg/kg) in combination with AGEN2034 (3mg/kg Q2Weeks) until disease progression or unacceptable toxicity (maximum 2 years). All 3 Arms are open and enrolling patients. The study is expected to enroll approximately 80 evaluable patients with solid tumors. Dose reductions are not allowed in the event of AGEN1181-related toxicities. Currently 3 cohorts have been completed, first cohort in the combination arm and the fourth cohort in the monotherapy arm are enrolling. Preclinical and clinical assessment of AGEN1181 supports continued development as a potential therapy for refractory or relapsed advanced solid tumors. Clinical trial information: NCT03860272 .


Sign in / Sign up

Export Citation Format

Share Document