specific expansion
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 33)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A205-A205
Author(s):  
Eleni Kotsiou ◽  
Joe Robinson ◽  
Amber Rogers ◽  
Daisy Melandri ◽  
Amy Baker ◽  
...  

BackgroundAdoptive transfer of ex-vivo expanded tumor-infiltrating lymphocytes (TIL) has shown promise in the clinic. However, the non-specific expansion of TIL and the lack of understanding of the active component of TIL has resulted in poor correlation between clinical response and dose as well as poor understanding of response and resistance mechanisms. The VELOSTM manufacturing process generates a precision and personalized treatment modality by targeting clonal neoantigens with the incorporation of an antigen-specific expansion step to enrich the product for these specificities. Achilles has developed a second generation manufacturing process (VELOSTM Process 2) to boost the neoantigen-reactive cell dose while maintaining key qualitative features associated with function. Here we report the in-depth characterization of clonal neoantigen-reactive T cells (cNeT) products expanded using the two VELOSTM processes.MethodsMatched tumors and peripheral blood from patients undergoing routine surgery were obtained from patients with primary NSCLC or metastatic melanoma (NCT03517917). TIL were expanded from tumor fragments and peptide pools corresponding to the clonal mutations identified using the PELEUSTM bioinformatics platform were synthesized. cNeT were expanded by co-culture of TIL with peptide-pulsed autologous dendritic cells, with an optimized cytokine cocktail and co-stimulation for Process 2. Neoantigen reactivity was assessed using our proprietary potency assay with peptide pool re-challenge followed by intracellular cytokine staining. Single peptide reactivities were identified using ELISPOT and flow cytometric analysis for in-depth phenotyping of cNeT was performed.ResultsCD3+ T cells displayed higher fold expansion in Process 2 (median 77.4) compared to Process 1 (median 3.8)(n=5). Both processes showed similar CD3+ T cell content (median Process 1=91.3%, Process 2=96.9% n=5) and contained both CD4+ and CD8+ T cells showing reactivity to clonal neoantigens. Proportion of cells responding to neoantigen re-challenge was similar across both processes (median Process 1=19.9% and Process 2=18.2%) leading to higher reactive dose when coupled with higher T cell doses in Process 2. Phenotypically T cells were predominantly effector memory for both processes and Process 2 had lower frequencies of terminally differentiated T cells.ConclusionsAchilles’ proprietary potency assay enables the optimization of new processes that deliver high cNeT doses to patients by detecting the active drug component. We have generated proof of concept data that supports the transfer of the VELOSTM Process 2 to clinical manufacture for two first-in-human studies for the treatment of solid cancers.Ethics ApprovalThe samples for the study were collected under an ethically approved protocol (NCT03517917)


Genetics ◽  
2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Zuzana Brzáčová ◽  
Mária Peťková ◽  
Katarína Veljačiková ◽  
Terézia Zajičková ◽  
Ľubomír Tomáška

Abstract The evolution of eukaryotic organisms starting with the last eukaryotic common ancestor was accompanied by lineage-specific expansion of gene families. A paper by Garge et al. provides an excellent opportunity to have students explore how expansion of gene families via gene duplication results in protein specialization, in this case in the context of eukaryotic cytoskeletal organization . The authors tested hypotheses about conserved protein function by systematic “humanization” of the yeast cytoskeletal components while employing a wide variety of methodological approaches. We outline several exercises to promote students’ ability to explore the genomic databases, perform bioinformatic analyses, design experiments for functional analysis of human genes in yeast and critically interpret results to address both specific and general questions.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1039
Author(s):  
Yeon Mi Lee ◽  
Geun Young Chae ◽  
Min Kyung Kim ◽  
Seungill Kim

Aquaporins (AQPs) are known to have a vital role in water transport in all living organisms including agriculturally important crops, but a comprehensive genomic study of AQPs in pepper has not been implemented. Here, we updated previous gene annotations and generated a total of 259 AQP genes from five plants, including pepper. Phylogenetic and motif analyses revealed that a large proportion of pepper AQP genes belong to the specific subgroup of tonoplast intrinsic protein (TIP) subfamily, TIP4. Chromosomal localization and estimated duplication times illustrated that genes in TIP4 formed a tandem array on the short arm of chromosome 1, resulting from pepper-specific expansion after its divergence with Solanaceae species. Transcriptome analyses under various abiotic stress conditions revealed that transport-, photosystem-, and thylakoid-related genes were generally enriched in expression clusters containing AQP genes in pepper. These results provide valuable genomic resources and insight into the evolutionary mechanism that generate genomic diversity of the AQP gene family in pepper.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. TPS2672-TPS2672
Author(s):  
Kyriakos P. Papadopoulos ◽  
Nehal J. Lakhani ◽  
Timothy A. Yap ◽  
Allison L Naumovski ◽  
Karen S Brown ◽  
...  

TPS2672 Background: Leukocyte Immunoglobulin-like receptor B2 [LILRB2; immunoglobulin-like transcript 4 (ILT4)] is an immunoinhibitory protein expressed on the surface of myeloid cells and is a therapeutic target of interest in immuno-oncology. Published data showed that antagonism of LILRB2 resulted in the repolarization of human macrophages from an M2 (suppressive) to M1 (pro-inflammatory) phenotype, and enhancement of anti-tumor immunity in a mouse model (Chen 2018). JTX-8064 is a novel humanized IgG4 monoclonal antagonist antibody that selectively binds LILRB2 and prevents it from binding its ligands, classical and non-classical MHC I molecules. By blocking the ability of LILRB2 to bind HLA-A/B and/or HLA-G, a marker of immunotolerance on cancer cells, JTX-8064 has been shown to enhance pro-inflammatory cytokine production in macrophages (Cohen 2019). Additionally, blocking HLA-A/B-LILRB2 binding with JTX-8064 may augment antigen presentation and has been shown to lead to enhanced T cell activation and IFNg production (McGrath 2021). Using an ex vivo tumor explant model, we observed an IFNg-associated pharmacodynamic response in tumor tissue treated with JTX-8064 and a PD-1 inhibitor (PD-1i) that was not observed with PD-1i alone. Biomarkers were identified that predicted this JTX-8064 driven response (Hashambhoy-Ramsay 2020). It is hypothesized that JTX-8064 is a novel macrophage immune checkpoint inhibitor that may overcome mechanisms of resistance to PD-1i in tumors not responsive to JTX-8064 or PD-1i alone. Methods: The primary objectives of this open-label, phase 1, first-in-human, multicenter trial are to determine the safety and tolerability, and the recommended phase 2 dose (RP2D) of JTX-8064 as a monotherapy and in combination with a PD-1i, JTX-4014 (a Jounce investigational agent) or pembrolizumab, in patients with advanced solid tumors (NCT04669899). The INNATE study will consist of 4 stages: 1) JTX-8064 monotherapy dose escalation, 2) JTX-8064 dose escalation in combination with a PD-1i, 3) JTX-8064 monotherapy in indication-specific expansion cohorts and 4) JTX-8064 in combination with a PD-1i in indication-specific expansion cohorts. Stages 1 and 2 will employ an innovative interval i3 + 3 design with Bayesian decision framework to guide dose escalation. Safety, pharmacokinetic and receptor occupancy data will be considered during dose escalation. INNATE will assess pharmacodynamic and potential predictive biomarkers of response, and the expansion cohorts will explore multiple patient populations, including PD-(L)1i sensitive and PD-(L)1i-resistant (primary or acquired) patients to address current unmet medical needs. Enrolment in INNATE began in January 2021. Clinical trial information: NCT04669899.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3007-3007
Author(s):  
Sang Joon Shin ◽  
Jeeyun Lee ◽  
Tae Min Kim ◽  
Jin-Soo Kim ◽  
Yu Jung Kim ◽  
...  

3007 Background: Belvarafenib, a potent, selective RAF dimer (type II) inhibitor, exhibits clinical activity in BRAFV600E- and NRAS-mutant (NRASm) melanoma patients. The combination of belvarafenib and cobimetinib more potently and durably suppressed MAPK pathway output and tumor growth than currently approved BRAF/MEK inhibitors in RAS- or RAF-mutant tumor xenograft models. This interim results of phase 1b trial evaluated the safety, tolerability, pharmacokinetics, and anti-tumor activity of belvarafenib in combination with cobimetinib in dose-escalation and NRASm melanoma patients among the 9 indication-specific expansion cohorts. Methods: Patients with locally advanced or metastatic solid tumors harboring RAS or RAF mutation were enrolled in the dose-escalation stage, and the recommended doses were explored in the indication-specific expansion stage. Patients in the dose-escalation stage were given belvarafenib (100–300mg BID) in combination with cobimetinib (20–40mg QD) and the dose of subsequent cohorts was decided by a traditional 3+3 design and safety profile. Primary objectives were to evaluate the safety and tolerability, to estimate the maximum tolerable dose, and to identify the RP2D of the combination. Results: A total of 32 patients enrolled were evaluated for safety analysis; 19 were enrolled in 4 cohorts in the dose-escalation stage and 13 NRASm melanoma patients were enrolled in the indication-specific expansion stage (cut-off date: 2020-7-24). There were 3 DLTs (G3 colitis, G3 diarrhoea, G3 nausea) in 2 patients at the starting dose of belvarafenib 200mg BID continuously and cobimetinib 40mg QD 21/7 schedule. Belvarafenib dose was escalated to 300mg BID with cobimetinib 20mg QD, which did not result in DLTs. The most common treatment-emergent adverse events that occurred in ≥30% of 32 patients were dermatitis acneiform, diarrhoea, constipation, and increase in blood creatine phosphokinase. Two combination doses were explored in the indication-specific expansion stage. Out of the 9 indication-specific expansion cohorts, NRASm melanoma patients exhibited promising efficacy signal; 5 patients reached partial responses (PRs) out of 13, giving a response rate of 38.5%. Among them, 11 had been previously treated with checkpoint inhibitors (CPIs), including 5 (45.5%) who achieved PR. The median PFS was 7.3 months and 5 patients remained on the treatment at the cut-off date. Conclusions: Belvarafenib in combination with cobimetinib showed acceptable tolerability and encouraging efficacy in NRASm melanoma, and in those with prior CPI treatment. Further research is ongoing in other cohorts (Clinicaltrial.gov, NCT03284502) and in NRASm melanoma (reference GO42273 by clinicaltrials.gov ID number). *S.J.S and J.L contributed equally to this work. Clinical trial information: NCT03284502.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 518
Author(s):  
Zequn Chen ◽  
Xiwu Qi ◽  
Xu Yu ◽  
Ying Zheng ◽  
Zhiqi Liu ◽  
...  

Terpenoids are a wide variety of natural products and terpene synthase (TPS) plays a key role in the biosynthesis of terpenoids. Mentha plants are rich in essential oils, whose main components are terpenoids, and their biosynthetic pathways have been basically elucidated. However, there is a lack of systematic identification and study of TPS in Mentha plants. In this work, we genome-widely identified and analyzed the TPS gene family in Mentha longifolia, a model plant for functional genomic research in the genus Mentha. A total of 63 TPS genes were identified in the M. longifolia genome sequence assembly, which could be divided into six subfamilies. The TPS-b subfamily had the largest number of genes, which might be related to the abundant monoterpenoids in Mentha plants. The TPS-e subfamily had 18 members and showed a significant species-specific expansion compared with other sequenced Lamiaceae plant species. The 63 TPS genes could be mapped to nine scaffolds of the M. longifolia genome sequence assembly and the distribution of these genes is uneven. Tandem duplicates and fragment duplicates contributed greatly to the increase in the number of TPS genes in M. longifolia. The conserved motifs (RR(X)8W, NSE/DTE, RXR, and DDXXD) were analyzed in M. longifolia TPSs, and significant differentiation was found between different subfamilies. Adaptive evolution analysis showed that M. longifolia TPSs were subjected to purifying selection after the species-specific expansion, and some amino acid residues under positive selection were identified. Furthermore, we also cloned and analyzed the catalytic activity of a single terpene synthase, MlongTPS29, which belongs to the TPS-b subfamily. MlongTPS29 could encode a limonene synthase and catalyze the biosynthesis of limonene, an important precursor of essential oils from the genus Mentha. This study provides useful information for the biosynthesis of terpenoids in the genus Mentha.


2021 ◽  
Author(s):  
Jose Manuel Latorre-Estivalis ◽  
Francisca Cunha Almeida ◽  
Gina Pontes ◽  
Hernán Dopazo ◽  
Romina Barrozo ◽  
...  

ABSTRACTInsect Pickpocket (PPK) receptors mediate the detection of stimuli of diverse sensory modalities, therefore having a relevant role for environmental sounding. Notwithstanding their relevance, studies on their evolution are scarce. We have analyzed the genomes of 26 species belonging to 8 insect orders (Blattodea, Orthoptera, Hemiptera, Phthiraptera, Hymenoptera, Lepidoptera, Coleoptera, and Diptera) to identify their PPK repertoires and study the evolution of this gene family. PPKs were detected in all genomes analyzed, with a total of 578 genes identified that distributed in 7 subfamilies. Our phylogenetic analysis allowed clarifying that the ppk17 gene appears to be the most divergent family member, composing a new group designed as subfamily VII. According to our analysis, PPKs evolved under a birth-and-death model that generated lineage-specific expansions usually located in clusters and the effect of strong purifying selection was seen for several orthogroups. Subfamily V was the largest one, presenting half of all PPKs studied, including a mosquito-specific expansion that can be considered a new target for pest control. Consistently with their sensory role, PPKs present a high gene turnover that generated considerable variation in the size of insect repertoires: Musca domestica (59), Blattella germanica (41), Culex quinquefasciatus (48), and Aedes albopictus (51) presented the largest PPK repertoires, while Pediculus humanus (only ppk17), bees and ants (6-9) had the smallest ones. The expansions identified in M. domestica and Bl. germanica also show promise as specific targets for controlling these nuisance insects. Our phylogenetic analysis revealed a subset of prevalent PPKs across insect genomes, suggesting a very conserved function that resembles the case of antennal ionotropic receptors. Finally, we identified new highly conserved residues in the second transmembrane domain that may be key for receptor function. Besides, more than a hundred PPK sequences presented calmodulin binding motifs, suggesting that at least some members of this family may amplify sensory responses as previously proposed for D. melanogaster ppk25. Overall, our study is a first attempt to characterize the evolutionary history of this family of sensory receptors, revealing relevant unknown features and clade-specific expansions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jadran F. Garcia ◽  
Daniel P. Lawrence ◽  
Abraham Morales-Cruz ◽  
Renaud Travadon ◽  
Andrea Minio ◽  
...  

The Botryosphaeriaceae is a fungal family that includes many destructive vascular pathogens of woody plants (e.g., Botryosphaeria dieback of grape, Panicle blight of pistachio). Species in the genera Botryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, and Neoscytalidium attack a range of horticultural crops, but they vary in virulence and their abilities to infect their hosts via different infection courts (flowers, green shoots, woody twigs). Isolates of seventeen species, originating from symptomatic apricot, grape, pistachio, and walnut were tested for pathogenicity on grapevine wood after 4 months of incubation in potted plants in the greenhouse. Results revealed significant variation in virulence in terms of the length of the internal wood lesions caused by these seventeen species. Phylogenomic comparisons of the seventeen species of wood-colonizing fungi revealed clade-specific expansion of gene families representing putative virulence factors involved in toxin production and mobilization, wood degradation, and nutrient uptake. Statistical analyses of the evolution of the size of gene families revealed expansions of secondary metabolism and transporter gene families in Lasiodiplodia and of secreted cell wall degrading enzymes (CAZymes) in Botryosphaeria and Neofusicoccum genomes. In contrast, Diplodia, Dothiorella, and Neoscytalidium generally showed a contraction in the number of members of these gene families. Overall, species with expansions of gene families, such as secreted CAZymes, secondary metabolism, and transporters, were the most virulent (i.e., were associated with the largest lesions), based on our pathogenicity tests and published reports. This study represents the first comparative phylogenomic investigation into the evolution of possible virulence factors from diverse, cosmopolitan members of the Botryosphaeriaceae.


2021 ◽  
Author(s):  
Daniel Thiel ◽  
Luis Alfonso Yanez Guerra ◽  
Mirita Franz-Wachtel ◽  
Andreas Hejnol ◽  
Gaspar Jekely

Neuropeptides are diverse signalling molecules in animals commonly acting through G-protein coupled receptors (GPCRs). Neuropeptides and their receptors underwent extensive diversification in bilaterians and the relationships of many peptide-receptor systems have been clarified. However, we lack a detailed picture of neuropeptide evolution in lophotrochozoans as in-depth studies only exist for molluscs and annelids. Here we analyse peptidergic systems in Nemertea, Brachiopoda and Phoronida. We screened transcriptomes from thirteen nemertean, six brachiopod and four phoronid species for proneuropeptides and neuropeptide GPCRs. With mass spectrometry from the nemertean Lineus longissimus, we validated several predicted peptides and identified novel ones. Molecular phylogeny combined with peptide-sequence and gene-structure comparisons allowed us to comprehensively map spiralian neuropeptide evolution. We found most mollusc and annelid peptidergic systems also in nemerteans, brachiopods and phoronids. We uncovered previously hidden relationships including the orthologies of spiralian CCWamides to arthropod agatoxin-like peptides and of mollusc APGWamides to RGWamides from annelids, with orthologues systems in nemerteans, brachiopods and phoronids. We found that pleurin neuropeptides previously only found in molluscs are also present in nemerteans and brachiopods. We also identified cases of gene family duplications and losses. These include a protostome-specific expansion of RFamide/Wamide signalling, a spiralian expansion of GnRH-related peptides, and duplications of vasopressin/oxytocin before the divergence of brachiopods, phoronids and nemerteans. This analysis expands our knowledge of peptidergic signalling in spiralians and protostomes. Our annotated dataset of nearly 1,300 proneuropeptide sequences and 600 GPCRs presents a useful resource for further studies of neuropeptide signalling in protostomes.


Sign in / Sign up

Export Citation Format

Share Document