Discrete element analysis of aggregate variability, blending, and fracture in asphalt mixture

2019 ◽  
Vol 9 (2) ◽  
pp. 327 ◽  
Author(s):  
Xuelian Li ◽  
Xinchao Lv ◽  
Xueying Liu ◽  
Junhong Ye

In order to investigate the damage to microstructure and some other micromechanical responses during a fatigue test on asphalt mixture, Particle Flow Code (PFC) was used to reconstruct a two-dimensional discrete element model of asphalt mixture, based on computed tomography (CT) images and image-processing techniques. The indirect tensile fatigue test of asphalt mixture was simulated with this image-based microstructural model, and verified in the laboratory. It was found that there were four stages during the fatigue failure: no crack, crack initiation, crack developing, and interconnected crack. Cracks mainly developed between the aggregate and asphalt mortar, near the loading axis. The corresponding stages of failure, the developing trend and the distribution characteristics of the cracks matched well with those in the laboratory test. Furthermore, the trends of both the time-load curve and time-displacement curve from the simulation test were also consistent with those from the experimental test. In short, the distribution characteristics of cracks and internal forces of asphalt mixture show that it is feasible to simulate the fatigue performance of the asphalt mixture by a discrete element method (DEM).


2021 ◽  
Vol 9 (3) ◽  
pp. 348
Author(s):  
Xue Long ◽  
Lu Liu ◽  
Shewen Liu ◽  
Shunying Ji

In cold regions, ice pressure poses a serious threat to the safe operation of ship hulls and fixed offshore platforms. In this study, a discrete element method (DEM) with bonded particles was adapted to simulate the generation and distribution of local ice pressures during the interaction between level ice and vertical structures. The strength and failure mode of simulated sea ice under uniaxial compression were consistent with the experimental results, which verifies the accuracy of the discrete element parameters. The crushing process of sea ice acting on the vertical structure simulated by the DEM was compared with the field test. The distribution of ice pressure on the contact surface was calculated, and it was found that the local ice pressure was much greater than the global ice pressure. The high-pressure zones in sea ice are mainly caused by its simultaneous destruction, and these zones are primarily distributed near the midline of the contact area of sea ice and the structure. The contact area and loading rate are the two main factors affecting the high-pressure zones. The maximum local and global ice pressures decrease with an increase in the contact area. The influence of the loading rate on the local ice pressure is caused by the change in the sea ice failure mode. When the loading rate is low, ductile failure of sea ice occurs, and the ice pressure increases with the increase in the loading rate. When the loading rate is high, brittle failure of sea ice occurs, and the ice pressure decreases with an increase in the loading rate. This DEM study of sea ice can reasonably predict the distribution of high-pressure zones on marine structures and provide a reference for the anti-ice performance design of marine structures.


2021 ◽  
Author(s):  
Antonio Pol ◽  
Fabio Gabrieli ◽  
Lorenzo Brezzi

AbstractIn this work, the mechanical response of a steel wire mesh panel against a punching load is studied starting from laboratory test conditions and extending the results to field applications. Wire meshes anchored with bolts and steel plates are extensively used in rockfall protection and slope stabilization. Their performances are evaluated through laboratory tests, but the mechanical constraints, the geometry and the loading conditions may strongly differ from the in situ conditions leading to incorrect estimations of the strength of the mesh. In this work, the discrete element method is used to simulate a wire mesh. After validation of the numerical mesh model against experimental data, the punching behaviour of an anchored mesh panel is investigated in order to obtain a more realistic characterization of the mesh mechanical response in field conditions. The dimension of the punching element, its position, the anchor plate size and the anchor spacing are varied, providing analytical relationships able to predict the panel response in different loading conditions. Furthermore, the mesh panel aspect ratio is analysed showing the existence of an optimal value. The results of this study can provide useful information to practitioners for designing secured drapery systems, as well as for the assessment of their safety conditions.


Meccanica ◽  
2017 ◽  
Vol 53 (7) ◽  
pp. 1571-1589 ◽  
Author(s):  
Balázs Rigó ◽  
Katalin Bagi

2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


Sign in / Sign up

Export Citation Format

Share Document