Fuzzy Dynamic Cluster Zoning of Stability and Its Application in Meishan Underground Mine *

2021 ◽  
pp. 151-157
Author(s):  
Gao Qian ◽  
Su Jing ◽  
Su Yonghua
2019 ◽  
Vol 7 (24) ◽  
pp. 15-19
Author(s):  
O.Yu. Kozlov ◽  
◽  
V.V. Kozlov ◽  
V.V. Agafonov ◽  
◽  
...  

2019 ◽  
Vol 5 ◽  
pp. 34-43 ◽  
Author(s):  
T. Kalybekov ◽  
◽  
K.B. Rysbekov ◽  
A.A. Toktarov ◽  
O.M. Otarbaev ◽  
...  

2013 ◽  
Vol 32 (2) ◽  
pp. 581-584
Author(s):  
Shu-min XIONG ◽  
Li-guan WANG ◽  
Zhong-qiang CHEN ◽  
Jian-hong CHEN

1996 ◽  
Vol 34 (10) ◽  
pp. 141-149 ◽  
Author(s):  
J. P. Maree ◽  
G. J. van Tonder ◽  
P. Millard ◽  
T. C. Erasmus

Traditionally acid mine water is neutralised with lime (Ca(OH)2). Limestone (CaCO3) is a cheaper alternative for such applications. This paper describes an investigation aimed at demonstrating that underground mine water can be neutralised with limestone in a fluidised-bed. The contact time required between the limestone and the acid water, chemical composition of water before and after treatment, and economic feasibility of the fluidised bed neutralisation process are determined. A pilot plant with a capacity of 10k1/h was operated continuously underground in a gold mine. The underground water could be neutralised effectively using the limestone process. The pH of the water was increased from less than 3 to more than 7, the alkalinity of the treated water was greater than 120 mg/l (as CaCO3) and the contact time required between mine water and limestone was less than 10 min (the exact contact time depends on the limestone surface area). Chemical savings of 56.4% can be achieved compared to neutralisation with lime.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ankita RayChowdhury ◽  
Ankita Pramanik ◽  
Gopal Chandra Roy

AbstractThis paper presents an approach to access real time data from underground mine. Two advance technologies are presented that can improve the adverse environmental effect of underground mine. Visible light communication (VLC) technology is incorporated to estimate the location of miners inside the mine. The distribution of signal to noise ratio (SNR) for VLC system is also studied. In the second part of the paper, long range (LoRa) technology is introduced for transmitting underground information to above the surface control room. This paper also includes details of the LoRa technology, and presents comparison of ranges with existing above the surface technologies.


2021 ◽  
Vol 4 (2) ◽  
pp. 31
Author(s):  
Haoxuan Yu ◽  
Shuai Li

With the continuous development of the mining industry, the world’s major mines have gradually entered the intelligent stage. In intelligent underground mines, the operation roads of the underground transportation equipment are very complicated, and the monitoring and control of the underground traffic have become the problems to be solved in the intelligent underground mines. Therefore, on the basis of solving the practical problems of underground mines, the concept paper discusses the possibility of the communication-based train control (CBTC) system being applied to underground mines through the summary and induction of the related literature. As mining engineers, we have proposed the function design for the CBTC system to solve the problems in underground mine rail transportation, but we still need to continue to work hard for the future development of the underground mines. The concept paper serves as a guide to the Tossing out a brick to get a jade gem, and it has implications for the development and the future of underground mine transportation.


Sign in / Sign up

Export Citation Format

Share Document